
Visibility Acceleration using Efficient

Ray Classification

Niels Billen
Philip Dutré

Report CW 695, 26 April 2016

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Visibility Acceleration using Efficient

Ray Classification

Niels Billen
Philip Dutré

Report CW 695, 26 April 2016

Department of Computer Science, KU Leuven

Abstract

Evaluating the visibility between two points is a common task in global illu-
mination algorithms. Traditionally, a ray is traversed through a hierarchical
data structure that is able to cull primitives which are unlikely to be hit by the
ray. However, a great amount of time is spent in traversing the acceleration
structure when a scene contains highly detailed objects or complex geometry
like hair or foliage. While these objects contain a lot of disconnected geometry,
their visibility is often very regular. In this paper, we present an algorithm
which is able to exploit this regularity. In a preprocessing step we create a data
structure for each object which classifies large parts of the objects ray space as
either blocked or uninhibited by the object. In a rendering phase, large amounts
of intersection tests can be avoided by performing a fast look-up in our data
structure. We show that our method can be advantageous in scenes contain-
ing complex geometrical objects since our algorithm is able to classify a large
amount of shadow rays, avoiding expensive intersection tests using a traditional
acceleration structure.

Keywords : ray tracing, visibility, shadows
CR Subject Classification : I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Ray Tracing



Visibility Acceleration using Efficient Ray Classification

Niels Billen and Philip Dutré

Department of Computer Science, KU Leuven, Belgium

Abstract
Evaluating the visibility between two points is a common task in global illumination algorithms. Traditionally,
a ray is traversed through a hierarchical data structure that is able to cull primitives which are unlikely to be
hit by the ray. However, a great amount of time is spent in traversing the acceleration structure when a scene
contains highly detailed objects or complex geometry like hair or foliage. While these objects contain a lot of
disconnected geometry, their visibility is often very regular. In this paper, we present an algorithm which is able
to exploit this regularity. In a preprocessing step we create a data structure for each object which classifies large
parts of the objects ray space as either blocked or uninhibited by the object. In a rendering phase, large amounts
of intersection tests can be avoided by performing a fast look-up in our data structure. We show that our method
can be advantageous in scenes containing complex geometrical objects since our algorithm is able to classify a
large amount of shadow rays, avoiding expensive intersection tests using a traditional acceleration structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing

1. Introduction

Visibility determination is a common operation in global il-
lumination algorithms. We can distinguish two types of vis-
ibility queries. The first determines the first visible surface
along a ray (so called first-hit visibility). The second de-
termines whether two points are mutually visible (so called
any-hit visibility). In this paper, we will focus on the latter.

Evaluating the visibility between two points is generally
costly since it requires testing whether any primitive in the
scene intersects the line segment connecting the points. Ad-
ditional data structures are commonly used to accelerate the
visibility evaluation. These acceleration structures are able
to cull primitives from the scene which are unlikely to in-
tersect the ray. As soon as an intersection is found, all other
primitives can safely be ignored.

In this paper, we introduce an acceleration structure which
accelerates visibility queries. Our acceleration structure is
precomputed for objects in the scene and is able to classify
for a large amount of rays whether the ray is blocked or un-
inhibited by the object, without the need of traversing a com-
monly used acceleration structure (e.g. a Kd-tree or a bound-
ing volume hierarchy). This is advantageous since traversing
a ray through such an acceleration structure can incur a lot
of performance overhead. Complex geometry such as hair

or foliage are an example where a lot of intersections and
traversal steps are required to find a blocking primitive.

The contributions of this paper are the following:

• We present a new data structure which precomputes the
visibility for objects in the scene;

• We propose a practical algorithm which can efficiently
classify rays as blocked or uninhibited;

• We show that we are able to reduce the required amount
of intersection tests up to 40% in scenes with specific dis-
tributions of geometry.

2. Related Work

Testing every primitive for intersection with every ray is im-
practical even for small scenes. A lot of research has focused
on additional data structures which allow quick determina-
tion of the relevant primitives for intersection testing (for a
survey, see [WMG∗09]). When large numbers of rays are
traced through a scene, the cost of constructing such an ac-
celeration structure is amortised by the reduction in the in-
tersection calculations.

To reduce the amount of intersection tests, acceleration
structures partition either the three-dimensional space con-



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

taining the primitives, the list of primitives, or the space of
rays which can hit the primitives.

2.1. Space Partitioning

By partitioning the three-dimensional space in cells, effi-
ciency is gained by traversing a ray front-to-back from cell
to cell, testing only primitives contained in cells which are
intersected by the ray. The ray traversal can be stopped af-
ter the first intersection is found, since no further cell can
contain a closer intersection. A disadvantage of space parti-
tioning is that a primitive can be referenced multiple times
when it is contained in more than one cell. This results in
a higher memory footprint and requires mailboxing tech-
niques [APB87] to prevent loss in intersection performance
when a ray intersects the same primitive multiple times.

Regular grids [FCK∗88], [LD08] partition three-
dimensional space in equally sized voxels, where each voxel
only contains a small number of primitives. An advantage
of a regular grid is that it can be constructed efficiently
using rasterization to determine the overlap of primitives
with voxels. However, the ray tracing efficiency of a grid
severely suffers in sparse scenes where a lot of time is spent
on traversing empty space.

Kd-trees [WH06] recursively partition three-dimensional
space in two partitions using axis-aligned planes. Therefore,
Kd-trees are able to adapt better than grids to scenes with ir-
regularly distributed geometry and achieve logarithmic time
efficiency.

2.2. Primitive Partitioning

An advantage of partitioning the list of primitives is that each
primitive is referenced only once in the acceleration struc-
ture. This leads to predictable memory consumption. Fur-
thermore, a ray will intersect a primitive at most one time
when it is traversed through the acceleration structure, elim-
inating the need for mailboxing. The disadvantage is that the
volumes of the nodes in the acceleration structure can po-
tentially overlap. Ray traversal cannot stop after finding an
intersection in a node since another overlapping node can
still contain primitives with a closer intersection point.

Bounding volume hierarchies [Wal07] are an example of
an acceleration structure that recursively divides the list of
primitives in two partitions. Ray traversal starts from the root
and the traversal only descends in a child node when the ray
passes through it, achieving logarithmic time efficiency.

2.3. Ray Space Partitioning

Rays in three-dimensional space can be represented as points
in five-dimensional space. Ray classification [AK87] con-
structs a hierarchical acceleration structure by subdividing
the five-dimensional ray space. Compared to algorithms that

partition space or the list of primitives, this eliminates the
need to traverse a ray front-to-back through multiple cells of
an acceleration structure. We only need to perform a look-
up of which cell contains the five-dimensional ray to retrieve
the primitives which potentially intersect the ray. However,
the memory consumption of this technique is several orders
of magnitude higher than traditional acceleration structures.
This is due to the fact that a cell in the five-dimensional ac-
celeration structure corresponds to an infinite beam in three
dimensions. Each cell stores the primitives which overlap
with this infinite beam. However, for a given beam, there are
many other beams which are overlap with its extend. This
causes primitives the be referenced multiple times in each
beam.

The memory consumption can be improved by
parametrising a ray in four-dimensional space either as the
intersection of an infinite plane and a direction [KKCS98]
or the entry and exit point on a sphere [MKYS07]. This
reduces the amount of cells and the overlap between the
cells. However, there is a trade-off in performance since
cells now contain more primitives.

In contrast to previous ray space partitioning algorithms,
our algorithm is specifically designed to accelerate the eval-
uation of visibility. The cells of our acceleration structure
only store the visibility of the cell, instead of a complete
list of primitives which overlap with the cell. This improves
the memory consumption and creates opportunities for com-
pression of our data structure.

3. Algorithm

Our goal is to construct an acceleration structure which is
able to efficiently classify whether an infinite ray r is blocked
or uninhibited by an object O. The visibility for an object O,
consisting of multiple primitives, is a binary function which
is defined as:

VO (r) =

{
0 r intersects a primitive of O
1 r does not intersect a primitive of O

(1)

The domain of VO can be reduced significantly by only
considering the rays intersecting the tightest bounding box
BO of the object. The visibility function with respect to the
object will always evaluate to 1 for rays which miss the
bounding box.

The rays which hit BO can be parametrised in four dimen-
sions using the barycentric coordinates (s, t) and (u,v) of the
two intersection points pentry and pexit with faces fi and f j
(see Figure 1). Every pair of faces fi, f j spans a subset of all
the infinite rays that hit BO.

Our algorithm is composed of the following steps:

1. During a preprocess, we construct our acceleration struc-
ture locally for objects O in the scene. We hierarchically
subdivide the four-dimensional space spanned by each



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

pair of faces of BO into cells and classify for each cell
in the hierarchy whether all rays contained in the cell are
either completely blocked, completely uninhibited or un-
classified.

2. During the rendering phase, when a ray intersects the
bounding box of an object, we perform a look-up in our
data structure to classify the ray. When a ray can be clas-
sified as blocked or uninhibited by the object O, we do
not have to resort to an exact visibility evaluation.

Each of these steps is described in more detail in the follow-
ing subsections.

Figure 1: Parametrisation of a ray to a four-dimensional
subspace. An infinite ray r can uniquely be identified by the
two faces it intersects and the barycentric coordinates of the
intersection points (s, t,u,v) on those faces.

3.1. Construction

Every ray intersecting BO can be identified uniquely by
the two faces it intersects and the barycentric coordinates
(s, t,u,v) ∈ [0,1]4 of its intersection points (see Figure 1).

Our algorithm constructs a tree over the four-dimensional
space spanned by every pair of faces of BO. We start with
the unity hypercube [0,1]4 containing all the rays spanned by
the two faces and recursively partition it in sixteen children
of equal size by splitting the hypercube equally in all four
dimensions.

To determine whether a node needs to be subdivided, we
densely sample the node using rays stratified over the four-
dimensional hypercube. We can distinguish between three
cases:

1. all sample ray are blocked by the object: we stop the re-
cursion and classify that the node is blocked by O;

2. all sample rays are uninhibited by the object: we stop the
recursion and classify that the node is uninhibited by O;

3. the sample rays are partially blocked by the object: we
continue with the recursion until the maximum depth is
reached.

Limiting the maximum depth is required to end the recur-
sion, otherwise it would continue endlessly around the edges
of the object. A node remains unclassified when it cannot be
classified as completely blocked or uninhibited by the object
when the maximum recursion depth is reached.

Classifying the nodes using sampling introduces approx-
imation errors. When an insufficient number of samples is
used, a node can be erroneously classified as completely
blocked or completely uninhibited. However, the error can
be made arbitrarily small by using more sampling rays.

The four-dimensional octree can be seen as a hierarchy of
three-dimensional shafts spanned between two faces of BO
(see Figure 2).

3.2. Rendering

During the rendering phase we first test whether a shadow
ray intersects the bounding box of the object. When the
shadow ray misses the bounding box, the object is cer-
tainly missed. When the shadow ray intersects the bound-
ing box, we determine which faces of the bounding box
are pierced and the barycentric coordinates of its intersec-
tion points. Next, we descent recursively in the hierarchy of
nodes spanned between intersected faces until we reach the
leaf node containing the shadow ray. We can again distin-
guish between three cases:

1. the node is completely blocked by the object: the visibil-
ity of the shadow ray evaluates to 0;

2. the node is completely uninhibited by the object: the vis-
ibility of the shadow ray for the object evaluates to 1;

3. the node is unclassified: in this case we need to resort to
a commonly used acceleration structure (e.g. Kd-tree or
bounding volume hierarchy) to evaluate the visibility.

When the ray completely pierces the bounding box, we only
need to resort to a commonly used acceleration structure
when a node is unclassified. In the other cases no intersec-
tion tests or traversal through such a hierarchy are required.

When a ray segment starts and/or ends within the bound-
ing box (see Figure 2), it is possible that the ray segment is
contained in a completely blocked node, while it does not hit
the object. Therefore, we resort to a commonly used acceler-
ation structure (e.g. bounding volume hierarchy) to evaluate
the visibility of these rays.

3.3. Implementation Details

We implemented our octree as a pointer-less octree [Gar82],
[Sam90], using 32 bits per node. Instead of using one pointer
per child, an interior node only stores the pointer to the first
of its children which are allocated continuously in memory.
By using a smart encoding of the nodes in our octree, we
can represent an interior nodes with sixteen leaf nodes as



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

Figure 2: The ray segment xy does not hit the object even
though is located in a shaft which is completely blocked by
the object. Therefore, when a ray segment starts and/or ends
inside the bounding box of an object when can only classify
rays which are laying inside an empty shaft.

one compressed interior node of 32 bits in our octree. Fur-
ther compression can be achieved by reducing the octree to
a directed acyclic graph [KSA13]. Redundant subtrees are
removed from our octree by allowing interior nodes to share
pointers to the identical subtrees.

Table 1 shows the amount of compression achieved by
reducing our pointer-less octree to a directed acyclic graph
and using compressed interior nodes.

Uncompressed Compressed

Killeroo 1036 MiB 107 MiB
Sierpinski 1786 MiB 146 MiB
Hairball 4539 MiB 284 MiB
Forest 11165 MiB 794 MiB

Table 1: Comparison of the compressed and uncompressed
octree data structure for the test scenes (see Figure 3) at a
recursion depth of 7.

4. Results

We evaluated the performance of our algorithm for several
scenes of increasing geometrical complexity (see Figure 3)
and compared it to a traditional bounding volume hierarchy.
To test the limits of our algorithm, we used various maxi-
mum subdivision depths and various amounts of ray samples
to classify a node. Table 2 summarises the rendering time,
amount of shadow ray intersections, memory consumption
and the error for our tests scenes. Each image is rendered

using 16 samples per pixel and the visibility of each light
source is evaluated using 128 shadow rays.

4.1. Performance

For scenes with simple visibility events (Killeroo scene) and
simple geometry (Sierpinski pyramid scene), we can see that
our algorithm is able to outperform the bounding volume hi-
erarchy by a slight margin. While the number of intersection
tests is reduced up to 38%, the rendering time is only slightly
reduced. This is due to the fact that a traditional acceleration
structure is very efficient in finding an intersection in these
scenes.

For scenes with complex visibility and complex geometry
(Hairball and Forest scene), our algorithm is able to reduce
rendering time up to 30% and the amount of intersections
up to 51%. The bounding volume hierarchy requires a lot of
traversal steps and intersection tests to find an intersection
with the strands of the hairball and the leaves of the trees (see
Figure 3). This is due to the fact that a ray traversed through
the bounding volume hierarchy frequently misses the small
geometry. In contrast, our algorithm can avoid these expen-
sive traversals and intersection tests for many shadow rays
by performing a simple look-up.

4.2. Recursion Depth

We expect more unclassified nodes in our data structure to
be classified as completely blocked or uninhibited when the
maximum subdivision depth is increased, because the rays
contained in a node become more coherent with each subdi-
vision. Our experiments verify this behaviour (see Table 2),
since increasing the maximum subdivision depth of our al-
gorithm results in reduced rendering times and intersection
counts. However, the memory and build time increase for
higher subdivision steps since more nodes need to be classi-
fied and stored in memory.

4.3. Error

When an insufficient number of rays is used to classify the
nodes, a node which is partially blocked by an object can
potentially be misclassified as completely blocked or com-
pletely uninhibited. As shown in Figure 4, this has a detri-
mental effect on the image quality. Fortunately, the error can
be made arbitrarily small by sampling a node with more rays.
However, this will result in increasingly larger build times
(see Table 2)

Using less samples per node also results in reduced ren-
dering time, build time and intersection counts. This is due to
a combination of factors. First, fewer nodes have to be sub-
divided due to the misclassification, resulting in lower build
times. Second, because less nodes are unclassified, we will
have to resort fewer times to the bounding volume hierarchy,
reducing the amount of intersections and the render time.



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

4.4. Build Time

The time required to build our acceleration structure, to a
sufficient depth and with a small enough error, can be large.
However, since our acceleration structure is created locally
for objects in the scene, we can build it once for an object
and store it on disk as an attribute to the object and reuse it
during subsequent renders.

5. Conclusions

We presented a new acceleration structure to accelerate
visibility queries by classifying large regions of the four-
dimensional ray space of an object as either blocked or un-
inhibited.

Our results show that there exists trade-off between the
performance and memory consumption of our algorithm.
Increasing the recursion depth of our tree results in larger
reductions in rendering time and intersection tests. How-
ever, a high recursion depth results in longer build times
and higher memory consumption. While our algorithm only
slightly outperforms a traditional acceleration structures for
scenes with simple geometry, our algorithm is able to reduce
the render time and amount of intersections significantly for
complex scenes.

References
[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classi-

fication. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (New York,
NY, USA, 1987), SIGGRAPH ’87, ACM, pp. 55–64. URL:
http://doi.acm.org/10.1145/37401.37409, doi:
10.1145/37401.37409. 2

[APB87] ARNALDI B., PRIOL T., BOUATOUCH K.: A
new space subdivision method for ray tracing CSG mod-
elled scenes. The Visual Computer 3, 2 (1987), 98–108.
URL: http://dx.doi.org/10.1007/BF02153666,
doi:10.1007/BF02153666. 2

[FCK∗88] FRANKLIN W. R., CHANDRASEKHAR N., KANKAN-
HALLI M., SESHAN M., AKMAN V.: Efficiency of uni-
form grids for intersection detection on serial and par-
allel machines. In New Trends in Computer Graphics,
Magnenat-Thalmann N., Thalmann D., (Eds.). Springer
Berlin Heidelberg, 1988, pp. 288–297. URL: http:
//dx.doi.org/10.1007/978-3-642-83492-9_25,
doi:10.1007/978-3-642-83492-9_25. 2

[Gar82] GARGANTINI I.: Linear octrees for fast process-
ing of three-dimensional objects. Computer Graphics
and Image Processing 20, 4 (1982), 365 – 374. URL:
http://www.sciencedirect.com/science/
article/pii/0146664X82900582, doi:http:
//dx.doi.org/10.1016/0146-664X(82)90058-2. 3

[KKCS98] KWON B., KIM D. S., CHWA K.-Y., SHIN S. Y.:
Memory-efficient ray classification for visibility operations.
IEEE Transactions on Visualization and Computer Graphics 4,
3 (Jul 1998), 193–201. doi:10.1109/2945.722294. 2

[KSA13] KÄMPE V., SINTORN E., ASSARSSON U.:
High resolution sparse voxel dags. ACM Trans.
Graph. 32, 4 (July 2013), 101:1–101:13. URL:

http://doi.acm.org/10.1145/2461912.2462024,
doi:10.1145/2461912.2462024. 4

[LD08] LAGAE A., DUTRÉ P.: Compact, fast and robust grids
for ray tracing. Computer Graphics Forum (Proceedings of the
19th Eurographics Symposium on Rendering) 27, 4 (June 2008),
1235–1244. URL: http://www3.interscience.
wiley.com/journal/121404245/abstract,
doi:10.1111/j.1467-8659.2008.01262.x. 2

[MKYS07] MORTENSEN J., KHANNA P., YU I., SLATER M.:
A visibility field for ray tracing. In Computer Graphics, Imaging
and Visualisation, 2007. CGIV ’07 (Aug 2007), pp. 54–61. doi:
10.1109/CGIV.2007.14. 2

[Sam90] SAMET H.: The Design and Analysis of Spatial Data
Structures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1990. 3

[Wal07] WALD I.: On fast construction of sah-based bound-
ing volume hierarchies. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing (Washington, DC, USA,
2007), Ray Tracing ’07, IEEE Computer Society, pp. 33–
40. URL: http://dx.doi.org/10.1109/RT.2007.
4342588, doi:10.1109/RT.2007.4342588. 2

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in o(n log n). In IEEE Symposium
on Interactive Ray Tracing 2006 (Sept 2006), pp. 61–69. doi:
10.1109/RT.2006.280216. 2

[WMG∗09] WALD I., MARK W. R., GÜNTHER J., BOULOS
S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State
of the art in ray tracing animated scenes. Computer Graph-
ics Forum 28, 6 (2009), 1691–1722. URL: http://dx.
doi.org/10.1111/j.1467-8659.2008.01313.x,
doi:10.1111/j.1467-8659.2008.01313.x. 1



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

Acceleration structure Killeroo Sierpinski Hairball Forest

Total render
time

BVH 44.4s 109.0s 122.5s 418.1s

VC
16 samples per node

depth 5 42.3s 104.4s 77.9s 281.0s
VC depth 6 42.1s 100.4s 76.3s 263.4s
VC depth 7 41.7s 100.7s 75.9s 250.3s

VC
81 samples per node

depth 5 42.6s 106.4s 84.9s 337.6s
VC depth 6 42.4s 103.9s 82.6s 319.6s
VC depth 7 42.0s 101.6s 80.8s 302.2s

VC
256 samples per node

depth 5 42.7s 106.6s 86.2s 367.2s
VC depth 6 42.2s 103.5s 84.2s 348.1s
VC depth 7 42.0s 102.3s 82.9s 330.7s

Number of
Shadow ray
intersections

BVH 303.80M 1212.40M 2790.33M 4602.29M

VC
16 samples per node

depth 5 182.4M 998M 1190M 2722M
VC depth 6 171.9M 955M 1133M 2444M
VC depth 7 164.6M 919M 1083M 2237M

VC
81 samples per node

depth 5 192.1M 1072M 1434M 3477M
VC depth 6 180.8M 1015M 1371M 3163M
VC depth 7 171.8M 959M 1296M 2888M

VC
256 samples per node

depth 5 196.0M 1098M 1542M 3854M
VC depth 6 183.1M 1036M 1474M 3551M
VC depth 7 173.6M 972M 1382M 3255M

Memory of
the

acceleration
structure

BVH 8.0 MiB 4.8 MiB 175.8 MiB 400.4 MiB

VC
16 samples per node

depth 5 1.3 MiB 1.0 MiB 1.2 MiB 3.7 MiB
VC depth 6 10.8 MiB 10.0 MiB 13.6 MiB 42.1 MiB
VC depth 7 83.1 MiB 97.4 MiB 179.9 MiB 486.9 MiB

VC
81 samples per node

depth 5 1.5 MiB 1.2 MiB 1.4 MiB 4.7 MiB
VC depth 6 13.0 MiB 13.0 MiB 16.8 MiB 57.7 MiB
VC depth 7 102.3 MiB 134.0 MiB 254.4 MiB 709.3 MiB

VC
256 samples per node

depth 5 1.6 MiB 1.3 MiB 1.5 MiB 5.1 MiB
VC depth 6 13.8 MiB 13.9 MiB 18.2 MiB 63.0 MiB
VC depth 7 107.2 MiB 145.7 MiB 283.6 MiB 793.4 MiB

Build time of
the

acceleration
structure

BVH 0.1s 0.1s 1.4s 3.2s

VC
16 samples per node

depth 5 3.6s 3.3s 12.1s 32.7s
VC depth 6 27.2s 24.6s 125.2s 300.5s
VC depth 7 195.9s 189.3s 1464.1s 2695.4s

VC
81 samples per node

depth 5 16.5s 11.4s 45.5s 141.7s
VC depth 6 111.6s 83.7s 433.7s 1224.1s
VC depth 7 812.9s 719.7s 5029.3s 10670.0s

VC
256 samples per node

depth 5 52.5s 27.7s 120.7s 376.9s
VC depth 6 320.0s 206.1s 1030.0s 3070.9s
VC depth 7 2351.8s 1978.1s 11559.1s 26392.2s

Classification
error

VC
16 samples per node

depth 5 0.770% 1.315% 1.082% 1.103%
VC depth 6 0.759% 1.291% 1.147% 1.137%
VC depth 7 0.753% 1.249% 1.180% 1.162%

VC
81 samples per node

depth 5 0.0551% 0.096% 0.142% 0.163%
VC depth 6 0.0548% 0.103% 0.155% 0.173%
VC depth 7 0.0549% 0.106% 0.160% 0.181%

VC
256 samples per node

depth 5 0.0062% 0.016% 0.058% 0.031%
VC depth 6 0.0068% 0.019% 0.060% 0.035%
VC depth 7 0.0071% 0.023% 0.060% 0.038%

Table 2: Performance of our Visibility Classification algorithm (VC) compared to a Bounding Volume Hierarchy (BVH).



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification

Killeroo Sierpinski Hairball Forest

V
is

ib
ili

ty
C

la
ss

ifi
ca

tio
n

V
is

ib
ili

ty
C

la
ss

ifi
ca

tio
n

In
te

rs
ec

tio
n

te
st

s
D

ep
th

5

V
is

ib
ili

ty
C

la
ss

ifi
ca

tio
n

In
te

rs
ec

tio
n

te
st

s
D

ep
th

6

V
is

ib
ili

ty
C

la
ss

ifi
ca

tio
n

In
te

rs
ec

tio
n

te
st

s
D

ep
th

7

B
ou

nd
in

g
Vo

lu
m

e
H

ie
ra

rc
hy

In
te

rs
ec

tio
n

te
st

s

Low High

Figure 3: Comparison of visibility classification against a bounding volume hierarchy. Every image is rendered using 16
samples per pixel and 128 shadow rays for every light source. The recursion depth of our acceleration structure varies from
5 to 7. The top row shows the test scenes rendered with our visibility classification algorithm. The second, third and fourth
row show the amount of intersection tests required to evaluate the visibility in each pixel using our visibility classification. The
last row shows this amount for the bounding volume hierarchy. The false-color images show that our algorithm outperforms
the bounding volume hierarchy and that amount of intersection tests decreases with every additional recursion step in our
algorithm.



N. Billen & P. Dutré / Visibility Acceleration using Efficient Ray Classification
V

is
ib

ili
ty

cl
as

si
fic

at
io

n
D

iff
er

en
ce

co
m

pa
re

d
to

B
ou

nd
in

g
Vo

lu
m

e
H

ie
ra

rc
hy

16 samples per nodes 81 samples per node 256 samples per node

Figure 4: Effect of the classification error on the image quality. Top row shows our visibility classification algorithm rendered
with an increasing amount of samples per node. The bottom row shows the difference image with the bounding volume hierarchy.
The error decreases as more samples are used to classify a node.


