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Abstract

Computing direct illumination efficiently is still a problem of major significance in computer graphics. The evaluation involves
an integral over the surface areas of the light sources in the scene. Because this integral typically features many discontinuities,
introduced by the visibility term and complex material functions, Monte Carlo integration is one of the only general techniques
that can be used to compute the integral. In this paper, we propose to evaluate the direct illumination using line samples instead
of point samples. A direct consequence of line sampling is that the two-dimensional integral over the area of the light source
is reduced to a one-dimensional integral. We exploit this dimensional reduction by relying on the property that commonly
used sampling patterns, such as stratified sampling and low-discrepancy sequences, converge faster when the dimension of
the integration domain is reduced. We show that, while line sampling is generally more computationally intensive than point
sampling, the variance of a line sample is smaller than that of a point sample, resulting in a higher order of convergence.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism—Ray Tracing

1. Introduction

Evaluating direct illumination is particularly challenging, since
it often shows high-frequency illumination effects such as sharp
shadows and bright specular reflections. This is in contrast to in-
direct illumination which usually has low-frequency content that
becomes smoother with additional reflections.

Direct illumination is expressed as an integral of the incident
lighting, material reflectance and visibility integrated over the area
of the light sources. Because this integral in general cannot be eval-
uated analytically, Monte Carlo integration is used as an unbiased
technique to compute the integral numerically. However, for com-
plex shadows and highly specular materials, there can be a con-
siderable amount of noise. We can reduce the noise by improving
the efficiency of the Monte Carlo estimator in two complementary
ways: using clever sampling schemes which increase the order of
convergence and/or reducing the time to evaluate a sample.

In this paper, we follow the former approach and express direct
illumination as a one-dimensional integral over a space of line seg-
ments. As a result, the integration domain of the direct illumination
is reduced from two dimensions to a single dimension which, com-
bined with appropriate sample distributions, allows us to achieve
higher orders of convergence.

The contributions of this paper are the following:
e We propose a practical algorithm which calculates the direct il-

lumination using line samples;
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e We evaluate the performance and efficiency of line sampling
compared to point sampling in a variety of scenes;

e We provide theoretical insights and empirically verify that, with
proper sampling distributions, line sampling can achieve a higher
order of convergence than point sampling.

2. Related Work

Monte Carlo integration for ray tracing was introduced to re-
place the aliasing artefacts, introduced by the usage of regular
sampling patterns, with stochastic noise [Coo86]. Different sam-
pling strategies have since been developed, because generating ran-
dom samples independently is generally sub-optimal as the samples
tend to clump together (approximately /N out of N samples lie in
clumps [Caf98]).

Stratification tries to resolve this issue by subdividing the inte-
gration domain into disjoint strata, and generating a random sam-
ple in each stratum. Theoretically, it can be shown that stratification
will never perform worse than random sampling [Caf98] and that
it has considerably faster order of convergence for well-behaved
functions [Mit96], [RAMNI12].

Quasi-Monte Carlo integration does not rely on random sam-
ples but uses a well-chosen deterministic sequence of points sam-
ples, where the sample positions are correlated to reduce clump-
ing [Nie92] [Caf98]. Due to the improved coverage of the integra-
tion domain, these point sequences can achieve a higher order of
convergence than independent point samples.
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In this paper, we primarily focus on stratification and low dis-
crepancy sequences, for a general overview of Monte Carlo inte-
gration we refer to [KWO0S].

Linear light sources represent an infinite collection of point light
sources which are collocated on a line segment. Typically, comput-
ing the direct illumination from a linear light source involves two
parts: resolving the visibility and evaluating the shading.

The visibility can be resolved by identifying the lit, umbra and
penumbra regions of the scene by projecting the scene geometry
onto itself using the endpoints of the linear light source as the
center of projection [NON85] [BP93]. Another approach is to use
shadow maps, computed at the endpoints of the linear light source,
to estimate the visibility [HBS00]. The discontinuities in the vis-
ibility along the linear light source can also be approximated nu-
merically [OF99]. A regular grid can be employed to identify the
potential occluders of a linear light source [PA91].

For an extensive survey on evaluating the shading from a lin-
ear light source using point samples, we refer to [OF01]. Analyti-
cal equations to evaluate the shading of diffuse linear light source
for purely diffuse and specular materials are described in [NON85]
[Pic92] [BP93].

Analytical methods exist for computing the illumination from
an unoccluded area light source with diffuse emission [Lam60]
[Arv95a] and arbitrary piece-wise polynomial emission [Arv95b].
In order to take visibility into account, the visible parts of the area
light are computed by clipping the projection of all the occluders
away from the area light source [NN85].

Applications of line sampling in computer graphics which, apart
from direct illumination, make use of line samples include, analyt-
ical scanline rendering [JPOO], the computation of single scattering
[SZLG10] and multiple scattering [NNDJ12] in participating media
and the reconstruction of high-quality motion blur [GBAMI11]. A
sampling technique for line segments which maintains blue-noise
properties was presented by [SZG*13].

3. Monte Carlo integration of direct illumination

Direct illumination from a single area light source is expressed by
the following integral:

La=0)= [ Lh=0f(© V)6 ()

where L is the radiance emitted from a point y on the light source
towards the shading point x, f; is the bidirectional reflectance distri-
bution function (BRDF), G (x,y) represents the geometric form fac-
tor between the shading x and a point y on light source and V (x,y)
is the visibility function which is equal to 1 when x and y are mu-
tually visible and O otherwise [DBBS06].

When N independent samples y1,¥2, Vi, ..., yn are randomly cho-
sen using a probability density function p(y;), L(x — ©) can be
approximated by:

L(yi = x) f: (0 < 3%V (x,51) G (x,%)
p(i)

N
L(x—0)= Z )

The standard deviation of this estimator converges according to
1
@ (N _5) in terms of the number of samples. While the conver-

gence is quite slow, requiring four times the number of samples to
halve the error, it has the advantage that the convergence rate is
maintained even in the presence of discontinuities and irrespective
of the dimension of the integrand.

Stratification: the order of convergence be improved significantly
by informed placement of the point samples over the integration
domain. Stratifying the samples, by subdividing the integration do-
main in disjoint strata and generating a random sample in each
stratum, distributes the samples more evenly in the integration do-

1 1
main. Stratification increases the convergence rate to O (N 27 )
1

for functions with a bounded first derivative and to O ( 2 2x)

when the function is only piece-wise continuous [Mit96], s being
the dimension of the integration domain.

Quasi-Monte Carlo integration: a higher order of conver-
gence can be attained by using quasi-random (also called low-
discrepancy) point samples, which are generated deterministically.
The point samples in such a low-discrepancy point sequence are
correlated to fill the integration domain as uniformly as possible.
The convergence rate O ((logN)*/N) is given by the Koksma-
Hlawka inequality [Nie92], however the effectiveness of low-
discrepancy sequences decreases in the presence of discontinu-
ities [Caf98].

The order of convergence for both stratified sampling and low-
discrepancy sampling increases when the dimension of the integra-
tion domain is reduced. In this paper, we aim to use this property
and reduce the dimension of the integration domain by writing the
direct illumination integral as a one-dimensional integral in line
space. In Section 4, we show how the direct illumination can be
reduced to a one-dimensional integral. In Section 5, we introduce
our algorithm to evaluate the direct illumination using line samples.
Finally, we show that, while line samples are more computationally
intensive to evaluate, a higher quality image can be generated faster
due to a higher order of convergence.

4. Light source sampling using line samples

Our goal is to reduce the variance of the Monte Carlo estimator, by
reducing the dimensionality of the integration domain. We achieve
this by representing the area light sources as integrals over line light
sources.

We assume the light source to be triangular (but this can be gen-
eralised to any convex, planar geometry). First, we project the tri-
angle onto an arbitrary vector in the plane of the light source ITI ,
resulting in a closed interval bounded by a and b on L_Jf Each point
u € [a,b] represents an infinite line in the plane of the light source
along the direction Ld which is orthogonal to L 1 - Such an infinite
line intersects the boundary of the light source at two points which
span a line segment of length / (), with direction Ld, where either
intersection point can be picked as the origin Lo( ) for the line
segment (Figure 1).

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.



Niels Billen & Philip Dutré / Line Sampling for Direct Illumination

Figure 1: Parametrisation of a line light (blue line) on a trian-
gular area light source (yellow triangle). The left image shows the
parameterisation in three dimensions, where a point x with normal
Nx is illuminated by an area light source with normal Ny. The right
image shows the parameterisation within the plane of the area light
source.

This allows us to explicitly write Equation (1) as:

Lx—=0)= | Ly—=x)h(0@<)V(xy)G(xry)dd, Q)

Alight

_ /ab/(;l(u)L(p(u) SO f (x,® & m>
V (3, p (1)) G (v, p (1) dudr

“

b
= / Liine (tt,x — ©)du 5)

where p (1) = L“:(”)if Ly (u) is a point on the line segment for
an offset u along the L axis.

By using a fixed orientation for the projection, the two-
dimensional integral over the area of the light source is now ex-
pressed as a one-dimensional integral over the shading contribu-
tion from infinitely many parallel line segments. Our goal is to ap-
ply Monte Carlo integration to the one-dimensional integral, while
evaluating the contributions of the line segments analytically.

5. Algorithm

In this section we will discuss our algorithm to compute the direct
illumination using line samples. Our algorithm proceeds as follows:

1. Generate a line sample on the light source by sampling u € [a, b]
(Section 5.1);

2. Determine the visible segments of the line sample using an ap-
propriate acceleration structure (Section 5.2);

3. Evaluate the shading analytically for the visible parts of the line
sample (Section 5.3).

5.1. Line sample generation

To evaluate the direct illumination using line samples, we ﬁ_rs>t have
to choose a direction for the projection of the light source L | . Sec-
ond, we need to properly sample the offset u to generate a line
segment on the light source.
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5.1.1. Line orientation sampling

We can distinguish three possible methods to choose the direction
to project the light source, and hence, the orientation of the line
sample (see Figure 2).

Fixed direction: we keep the projection orientation L_J: fixed for
each light source (i.e. all the line samples on a light source share
the same orientation for each shading point x). While this results
in an unbiased estimate of the direct illumination, artefacts become
apparent, which are most visible in the penumbra regions of the
scene (see the renders and insets of Figure 2). When the projection
direction is orthogonal to a shadow boundary, a region of the inter-
val [a, b] contains line segments with zero contribution, introducing
variance. When the projection direction is parallel with the shadow
boundary, every line segment in the interval [a,b] has a non-zero
contribution, resulting in less variance. This can be seen in the in-
sets of Figure 2, where the right side of the penumbra (where the
projection direction is parallel to the shadow boundary) is nearly
converged, while the left side (where the projection direction is or-
thogonal to the shadow boundary) remains noisy.

Uniform g}'ection: we can independently pick the projection ori-
entation L | uniformly on the unit circle for every line sample.

However, this would result in a convergence rate O (N _5). The

expected value of the Monte Carlo estimator for Equation (5) is the
same for every random projection direction. By choosing a uniform
orientation projection direction for every line sample, we are just
averaging the values of N independent estimators, each evaluated
with only a single line sample.

While it is possible to apply appropriate sampling to the combi-
nation of the projection direction and the line offset, this would we
be equivalent to sampling a two-dimensional integral, preventing
us from achieving a higher order of convergence.

Parallel per shading point: we can assign a random projection di-
rection to each light source for every shading point x. Line samples
used to evaluate a single shading point are parallel to each other.
This enables us to properly distribute the offsets of the parallel line
samples (e.g. using stratification, low-discrepancy sequences, ...),
allowing us to achieve a higher order of convergence. Furthermore,
the artefacts present when the projection direction is fixed are re-
placed by noise, which is visually less objectionable, because the
line samples of each shading point will have a different orientation.
Therefore, we prefer this method to choose the projection direction
in the implementation of our algorithm.

5.1.2. Line offset sampling

A simple way to chose the offsets of the line samples is to uni-
formly distribute them within the interval u € [a, b]. However, since
longer line samples will have a higher contribution to the image
than shorter segments, this would introduce additional variance as
shown in Figure 3.

To resolve this issue, we importance sample the line segments
with respect to their length I (u) on the light source. Our impor-
tance sampling reduces the noise significantly, since every point on
the light source now has an equal probability to be located on a line
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Fixed direction

Uniform direction per
line sample

Al w2y

Uniform direction per
shading point

Figure 2: Influence of the choice of the projection direction. The top row shows the directions of the line samples for two different shading
points (in red and blue respectively). The scene with the glossy teapot has been rendered using the three line sampling methods.

Uniform sampling Importance sampling

Figure 3: Uniform versus importance sampling of the offset of the
line segments.

sample. Importance sampling can be implemented trivially for tri-
angular light sources by noting that the probability density function
for sampling u will also have a trieﬂgular shape. If the projection
of the vertices of the triangle onto L are equal to a, b and ¢, with
a < ¢ < b, then the pdf will be zero at ¢ and b and reach its maxi-
mum of 2/Ajiep in c.

5.2. Visibility evaluation

Before we can evaluate the shading analytically, we have to deter-
mine the parts of the line sample which are visible for the shad-
ing point. Only the geometry of the scene which intersects the tri-
angle spanned by the shading point and the endpoints of the line
sample (the shadow triangle) can potentially occlude the line sam-
ple (Figure 4). To efficiently find the intersecting geometry, we
use a Bounding Volume Hierarchy (BVH) as an acceleration struc-
ture [WMG*07].

The BVH is traversed by recursively descending into the nodes
whose bounding box intersects with the shadow triangle [AMO5].
When a leaf node is encountered, we perform intersection tests
between the shadow triangle and the triangles stored in the leaf
node [Mo197]. The intersection lines, resulting from the intersec-
tion between a the shadow triangle and an occluding triangle, are
then back-projected on the line sample on the light source to deter-
mine which part of the light sample is blocked.

We perform clipping efficiently 1_n> the parameter space of a
point p on the line sample with p = Lo 41 - Ly. We start with a fully
visible line sample. Every back-projected intersection between the
shadow triangle and a triangle in the scene clips a part from the
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visible

shadow triangle

intersection lines

Figure 4: Visibility determination of a line segment. Once, all the
intersection lines between the shadow triangle and the geometry in
the scene are found, the intersection lines are projected back onto
and clipped from the line sample. After clipping, only line segments
which are visible to x remain.

0.000 IBRIER0.000 1.527
Figure 5: The number of line segments in which a line sample is
cut after visibility evaluation for two scenes shown in Figure 6. The
Cornell box contains many disjoint occluders, resulting in many

separate line segments for which the direct illumination has to be
evaluated.

still visible intervals, which is performed in logarithmic time, be-
cause we use an binary tree over the visible intervals of the light
source. Scenes containing many disjoint occluders cut a line sam-
ple in many smaller line segments. This is illustrated in Figure 5,
which shows the number of disjoint visible line segments in which
a line sample was cut by occluders for each pixel.

The complexity of finding all the triangles overlapping the
shadow triangle equals O (log(n) +m), where n is the number of
geometrical primitives in the scene and m the number of trian-
gles which overlaps with the shadow triangle. Therefore, the vis-
ibility query becomes more computationally intensive for complex
scenes, where many triangles overlap with the shadow query.

(© 2016 The Author(s)
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5.3. Shading evaluation

To evaluate Equation (5) as a one-dimensional integral, we need an
analytic expression for the direct illumination emitted by the line
segments which remain visible to x after the visibility evaluation.
We derive analytic solutions for diffuse line light sources illumi-
nating diffuse (Section 5.3.1) and glossy (Section 5.3.2) materials.
Similar derivations have been done in previous work on linear light
sources [NONSS] [Pic92] [BP93], however, they assume the light
source to have a uniform emission over all outgoing directions. In
contrast, we have to take normal of the light source into account,
because our line samples are sampled from an area light source.

5.3.1. Diffuse material

A diffuse material has a BRDF equal to f; = kq/m. The only non-
constant factor in the direct illumination for a completely visible
diffuse light source is the geometry term. We can simplify Equa-
tion (5) by translating the frame of reference for x to be at the ori-
gin:

k )
Lijine (x — ®):Lnght;d /0 G(p)dt ©)
ke (1PN (P-Ny)
LA =
i [ O

where Ny and IV; are the normals of the shading point and the light
source respectively.

The term (7 - Ny) can be reduced to (Lo - Ny) because the direc-
tion of the light l‘,(; is always located in the plane of the light source
and therefore orthogonal to the normal Ny:

- — ](l_m:+t‘l_zd))‘1vx>
e

ka
Lijne (x = ©) = —Lijjon— (Lo - Ny = = 8
lme( ) hghlﬂ? ( 0 y ‘|Lo+t~Ld||4 ( )

which has a closed form solution. For the remainder of the deriva-
tion, we refer to Appendix A.

5.3.2. Phong material

A Phong material has a reflectance function:

(n+2) (px- ﬁ)n

fr=ks 2n

©

where R is the perfect mirrored reflection of the incoming direction
® and 7 the specular exponent. The direct illumination for a Phong
material is then equal to:

) dt  (10)

(%N (5%-N) (5% R
Lie (x — ©) = Lligm%ks/o (7t ) E%lgﬂ (7 R
To simplify this integral, we follow the derivation of [PA91] and
first perform a change in coordinate systems so that the shading
point x is located at the origin and the line segment lays completely
in the xy-plane. Next, we perform a change of variables and rep-
resent all vectors in spherical coordinates (0,9,r), to replace the
integral along the length of the line segment by an integral over the
angle subtended by the line segment. Because the line segment is
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contained in the xy-plane, the substitution is equal to:

Lo, +1-Lg, Lo +1-sin(6y)
Z0_:+['I:j_: B I::th-cos(SL)

tan (0) = (11)

r:\/(L_o:—i-t-cos(el‘))z—i—(L_oy)—O—t-sin(GL))2 (12)

where 0, = tan~! (Ldy ,de> . We find the Jacobian for the variable
substitution by taking the derivative of Equation (11):

r2

dt = = —
Lo, sin(8;) — Lo, cos (8.)

de (13)

Performing the change of variables to Equation (10) results in:

sin (q)ﬁ;) sin <(pﬁ;)
Lo, sin (6, —Ij;cos (6L) . (14)

/eemax cos (9 - Gﬁg) cos ((—) - e’W) cos (6—0)" a6

'min

Llinc ()C — @) =

By applying trigonometric identities to Equation (14), the equation
can be written as a sum of two types of integrals:

_ n+1
/cos(e)"sin(e) o — % (a5s)
n
. . n—1 _: _ .
/cos (0)"de = cos(6)" sin(6) + n—l/cos(ﬂ)”_zde (16)
n n

where the first has a definite form and the second has to be evalu-
ated recursively. For the full derivation, we refer to Appendix B.

6. Discussion
6.1. Results

We have implemented our algorithms in PBRTv3 [PHW16] and
evaluated algorithm on a number of scenes, both with large light
sources (Figure 6) and with small light sources (Figure 10).

(a) Grid planes: this scene features a complex shadow pattern be-
ing cast by simple geometry on a surface.

(b) Eurographics logo: shows the specular reflection of the Euro-
graphics logo from a surface with a large specular exponent.

(c) Cornell box: shows complex shadow patterns being cast by a
large set of occluders in a Cornell box.

(d) Sponza: a scene of moderate complexity featuring bump map-
ping.

We compare our line sampling algorithm against point sampling
using a number of Monte Carlo point sampling distributions.

Uniform sampling

Both point sampling and line sampling converge with the inverse
square root of the number of samples. For both the scenes contain-
ing large and small light sources, line sampling has a consistently
lower mean squared error when compared to point sampling for an
equal amount of samples (see Figure 7 and Figure 11). This is to be
expected, since a line sample contains infinitely many points and
thus contains more information about the integrand than a single
point sample.

However, if we compare the mean squared error versus the ren-
dering time, we can see that point sampling usually achieves lower
errors in a less time (see Figure 8 and Figure 12). While the vari-
ance of line samples is lower, they require more time to evaluate
resulting in a lower efficiency.

Stratified sampling

As stated in previous work [Mit96], stratification of the samples re-
sults in higher convergence rates. Furthermore, stratified sampling
suffers from the curse of dimensionality, implying that the conver-
gence rate degrades for higher dimensional integrals. This can be
verified from the convergence graphs in both scenes with large and
small light sources (see Figure 7 and 11), which show that line
sampling converges faster than point sampling.

Due to the longer rendering times of line sampling, we can see
that for more complex scenes, point sampling initially achieves
lower errors in less time (see Figure 8 and Figure 11). However,
due to the significantly faster convergence rate, line sampling is
able to overtake point sampling.

Low-discrepancy sampling

Due to the more uniform coverage of the integration domain, low-
discrepancy sequences increase the order of convergence when
compared to purely random distribution. This can be verified from
Table 9 and Table 13, which report the order of convergence the
standard deviation in terms of the number of samples for the scenes
with large and small light sources respectively.

However, low-discrepancy line sampling only outperforms strat-
ified sampling for the Eurographics logo and the Sponza. The Grid
scene and Triangle soup scene feature more complex visibility
events, which introduce a large amount of discontinuities in the di-
rect illumination integral. This explains the lower convergence rate,
because low-discrepancy sequences converge slower for integrands
for which the variability is higher [Nie92].

Visibility evaluation

The rendering time increases when the light sources are larger. Line
samples on large light sources span larger shadow triangles in the
scene, increasing the time to evaluate the visibility because more
intersection tests have to be performed. This can be seen by com-
paring the number of intersections performed against the bounding
boxes of the BVH and the triangles of the scene in Table 1.

Phong shading

Analytical evaluation of the Phong shading requires evaluating a
recursive function which has an algorithmic complexity of O (n),
where n is the Phong exponent. As a result, highly glossy materials
require prohibitive amounts of computation time to evaluate. To
resolve this issue, we tabulate and interpolate the possible values
of Equation (16). This can be done efficiently using a non-uniform
point set with a higher density near the origin, since Equation (16)
quickly converges to a constant for high Phong exponents.

(© 2016 The Author(s)
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6.2. Limitations

Currently, we are limited to materials for which the direct illumina-
tion along a line segment can be evaluated analytically. However,
materials with a more complex appearance can be approximated by
a weighted sum of generalised cosine lobes [LFTG97] [NDMO5]
and/or other basis functions which can be evaluated analytically.

Evaluating the visibility dominates the total rendering time as
90% of the time is spent traversing the acceleration structure. Fur-
thermore, our algorithm performs worse for scenes where a large
amount of geometry blocks a light source. To evaluate the visibility
of a line sample, all the potential blockers have to be found. The
complexity of finding all the intersections equals O (log(n) 4+ m).
Therefore, in scenes with large amounts of small geometry over-
lapping the shadow triangles, the complexity of the visibility eval-
uation will become nearly linear.

7. Conclusion

We have presented a novel algorithm to evaluate the direct illumi-
nation using line instead of point samples. Line sampling reduces
the dimension of the integration domain for the direct illumina-
tion from a two-dimensional integral to a one-dimensional integral.
We have exploited this dimensional reduction by using the theo-
retical property that common sample distributions, such as strati-
fied sampling and low-discrepancy sequences, have a higher order
of convergence for lower dimensional integrals. Our results ver-
ify this behaviour and show that, while evaluating a line sample is
more computationally intensive than point sampling, line sampling
achieves a higher order of convergence than point sampling.

8. Future work

In this work, we have chosen to parameterise the area light source
with parallel line segments. It remains future work to investigate
different parameterisations of the light source. An example of such
a parameterisation generates line segments which all have the same
offset, but have random orientations (i.e., all line segments share a
common origin).

The efficiency of the visibility estimation can be improved by
using geometrical proxies [CLF*03] [SSLL14], hierarchical rep-
resentations of the geometry [CNS*11], or by tagging fully oc-
cluded nodes and changing the traversal of the acceleration struc-
ture [DKHO09].

We have only implemented diffuse and Phong materials, how-
ever, any material which is analytically integrable along a line seg-
ment is compatible with our framework. Spherical Gaussian are
interesting basis functions for materials since they have simple an-
alytical expressions for the inner product, convolution and integra-
tion.
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A. Diffuse material — Derivation

The contribution of a line sample, sampled from a diffuse light
source, to the shading of a point x with a diffuse BRDF equals:

kd - —> [(I:;JFII::)IV;
Ljine (x = ©) = —Ljjght — (Lo - V; /ﬁﬁ—
lme( ) hghln ( o y) 0 HL0+I"Ld||4

dr a7
By applying the following substitutions:
A=Lo-N
D=1L;-Lg

B=ILq-N; C=Lo-Lo
- - (18)
E=Lij-Li=1 F=L,-N,
we can write Equation (17) to:
k, ! A+1tB
Line (x = ©) = ~Lign *F [ — (19)
T Jo (C+2Dt+12)
which has a closed form solution:
Lline(x_>®):
ki (A—BD) i D i ( D+l
73 tan ———= | —tan —————
2(C—D?)? VC—D? VC—D?
. ka [(BC(C+1))+A(C—DI—2D?)
et T T2 (C— D) (2 +2DI +C)

Ly; ght

(20)

B. Phong material — Derivation

The contribution of a line sample, sampled from a diffuse light
source, to the shading of a point x with a Phong BRDF equals:

L o) sin ((pﬁ;) sin ((p@)
line (X — = — —
e Lo, sin (81.) — Lo, cos (61.) @n

Omax
n
‘/emin cos (G - 9@) cos (9 - 9@) cos (9 — G;g) de
To solve the integral, we perform another change of variables with
u =0 — 63 and use trigonometric identities to rewrite the product
of cosine to a sum:

/umx cos (u)" cos (u-&-Gﬁ—G[V;) cos (u—}—eﬁ—eﬁ;) du 22)
Umin
[ cos (u)"
Umin

. (cos( )cos (6 -0 x) — sin (u) sin <6§> —9@)) (23)

. (cos (u) cos (eTe’ ]V;) n (u)sin < )) du
= cos (6;—6@)(: 08 6 —0y % /“max u)"*2 dy

u,

'min

Umax
—cos <9§> - eﬁ;) sin <9 -6y / cos ()" sin () du
i @9
—sin (G? — 9]\7}:) 0s (9 -0y e / cos ( "+1 sin (u) du
Umin

+sin (67{7617;) sin (6 —0 y)/“max cos ()" sin () du
u,

min

where Upin = Omin — 0% and Umax = Omax — 03

Each of the four terms in Equation (24) can be written into a
form which is equal to either Equation (15), which has a closed
form solution, or either to Equation (16), which has to be evaluated
recursively.
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Figure 6: The scenes used to evaluate our line sampling algorithm containing large light sources.
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Figure 9: Convergence order of the standard deviation the in terms of the number of samples for the various sampling distributions.
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Scene Grid Planes Eurographics logo Triangle soup Sponza
Light source size Small Large Small Large Small Large Small Large
Render time 79s 11.0s 22.0s 22.7s 22.7s 58.0s 39.7s 455.7s

# shadow triangle-box
intersections

1462.0M 19264M 1929.3M

19293M 7686.7M 13848.6M 7809.1M 53729.2M

# shadow triangle—triangle

136.3M  2682M 412.7M

4155M  3449M 12382M 14983M 214742M

intersections

# shadow triangle-box 185.8M 1748M  87.7M  85.1M 3394M  2389M 196.6M  117.9M
intersections per second

# shadow triangle-triangle 1\ o) 3 jgenM 183M 152M 214M 377M 47.0M

intersections per second

Table 1: Performance of the visibility evaluation for our test scenes rendered with small and large light sources. We used 1024 line samples
to evaluate the direct illumination for each shading point. The table shows the render time, the number of intersections between shadow
triangles and the bounding boxes of the BVH nodes, the number of intersections between shadow triangles and the geometry of the scene.
Finally, we have also included the average number of intersection tests per second.
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