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Visibility evaluations in graphics

“Find the first visible surface”
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Motivation

I Exact visibility evaluation
slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Motivation
I Exact visibility evaluation

slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Motivation
I Exact visibility evaluation

slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Motivation
I Exact visibility evaluation

slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Motivation
I Exact visibility evaluation

slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Motivation
I Exact visibility evaluation

slow, high quality shadows

I Approximate visibility evaluation
fast, low quality shadows

I Is it possible to render exact
shadows using geometry proxies?

4/44



Related work

I Approximate geometry
I Silvennoinen et al. [2014]: Occluder simplification using

planar sections.
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Probabilistic Visibility: Theory

I Monte Carlo estimation of a sum:
S = s1 + s2 + ... + sn

I Pick a single term si with probability pi :

S̃ =
si

pi

S̃ =
1
M

M∑
i=1

si

pi

E
[
S̃
]
= S
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Probabilistic Visibility: Theory

Ldirect (x → θ) =∫
A

f (x , yx ↔ θ) L (y → x)VP (x , y)G (x , y) dA

x

Three cases:
I with probability pproxy , evaluate VP′ (x,y)

pproxy

I with probability pcorrection+ , evaluate VP (x,y)VP′ (x,y)
pcorrection+

: first evaluate VP′ (x , y):

a. if VP′ (x , y) = 1: done
b. if VP′ (x , y) = 0: evaluate VP (x , y)

I with probability pcorrection− , evaluate VP′ (x,y)VP (x,y)
pcorrection−
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a. if VP′ (x , y) = 0: done
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Results
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Results

Ground truth Probabilistic evaluation using 256
shadow rays
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Results

Ground truth Probabilistic evaluation using 512
shadow rays
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Practical algorithm

I Goals

I Minimize the variance
I Account for cost

I How?

I Determine the optimal probabilities pproxy , pcorrection+

and pcorrection−
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Minimizing variance

Var
[
ṼP (x , y)

]
=

(1− Vavg ) (1− fhit)
(

pproxy + pcorrection+
)

pproxy pcorrection+

+
Vavg (1− fmiss)

pcorrection+
+

Vavg fmiss
pproxy

− V 2
avg

(derivation see paper)
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P ′
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ṼP (x , y)

]
=

(1− Vavg ) (1− fhit)
(

pproxy + pcorrection+
)

pproxy pcorrection+

+
Vavg (1− fmiss)

pcorrection+
+

Vavg fmiss
pproxy

− V 2
avg

(derivation see paper)

Vavg =
#rays which miss P

#rays which miss P +#rays which hit P

P

P ′

Minimizing the variance results in optimal probabilities pproxy , pcorrection+ and

pcorrection− .

26/44



Minimizing variance

Var
[
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Minimizing variance: Outside proxies

I Rays of type TypeHM′ do not exist.
I Estimator:

ṼP (x , y) =


VP′ (x ,y)

pproxy
probability pproxy

VP (x ,y)VP′ (x ,y)
1−pproxy

probability 1− pproxy

I fhit =
#rays which hit model and proxy

#rays which hit the model = 1
I Variance:

Vavg (1− fmiss)

1− pproxy
+

Vavg fmiss
pproxy

− V 2
avg

P

P ′
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Minimizing variance: Outside proxies
I Var

[
Ṽ (x , y)

]
=

Vavg (1−fmiss )
1−pproxy

+
Vavg fmiss

pproxy
− V 2

avg

I fmiss = #rays which miss both model and proxy
#rays which miss the model

P

x
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Ṽ (x , y)

]
=

Vavg (1−fmiss )
1−pproxy

+
Vavg fmiss

pproxy
− V 2

avg

I fmiss = #rays which miss both model and proxy
#rays which miss the model

P

x

28/44



Minimizing variance: Outside proxies
I Var

[
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Variance: Inside proxies
I Rays of type TypeMH′ do not exist.

I Estimator:

ṼP (x , y) =


VP′ (x,y)

pproxy
probability pproxy

−VP′ (x,y)VP (x,y)
1−pproxy

probability 1− pproxy

I fmiss = #rays which miss model and proxy
#rays which miss the model = 1

I Variance:

(1− Vavg ) (1− fhit)

p1 (1− pproxy )
+

Vavg

pproxy
− Vavg

2

P

P ′

29/44



Variance: Inside proxies
I Rays of type TypeMH′ do not exist.
I Estimator:
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Minimum variance: Results

I Problem:
optimal probabilities contain unknown parameters Vavg ,
fhit , fmiss

I Solution:
estimate unknown parameters for a shading point x using
probe rays.

30/44



Minimum variance: Results

I Problem:
optimal probabilities contain unknown parameters Vavg ,
fhit , fmiss

I Solution:
estimate unknown parameters for a shading point x using
probe rays.

30/44



Minimum variance: Inside proxies
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Minimum variance: Inside proxies

Inside proxy Inside proxy
equal probabilities optimal probabilities

16sr

1024sr
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Minimum variance: Outside proxies
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Outside proxy Outside proxy
equal probabilities optimal probabilities

16sr

1024sr
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Minimum variance: General proxies
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equal probabilities optimal probabilities
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Minimum variance: Problem

Original geometry Outside proxies

Optimal pproxy

Variance minimization does not account for intersection cost. Therefore
the term with the exact visibility will be favored in umbra regions.

37/44



Minimum variance: Problem

Original geometry Outside proxies Optimal pproxy

Variance minimization does not account for intersection cost. Therefore
the term with the exact visibility will be favored in umbra regions.

37/44



Minimum variance: Problem

Original geometry Outside proxies Optimal pproxy

Variance minimization does not account for intersection cost. Therefore
the term with the exact visibility will be favored in umbra regions.

37/44



Favour cheap geometry proxy tests
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Favour cheap geometry proxy tests

Increase pproxy when VP (x , y) ∼= VP′ (x , y)

error =
# probe rays where VP (x , y) 6= VP′ (x , y)

# probe rays

p′correction+
= 4
√

error · pcorrection+

p′correction− = 4
√

error · pcorrection−

p′proxy = 1− p′correction+
− p′correction−
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Favour cheap geometry proxy tests

Optimal pproxy Modified pproxy
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Results: Equal time
Exact visibility Outside proxies General proxies

(adaptive probabilities) (adaptive probabilities)

R
en

de
rin

g
In

te
rs

ec
tio

ns

Shadow rays 256 192 240
per shading point

MSE 4.461× 10−7 5.36× 10−6 2.448× 10−6
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Results: Equal time
Exact visibility Outside proxies General proxies

(adaptive probabilities) (adaptive probabilities)

R
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ns

Shadow rays 256 352 480
per shading point

MSE 6.158× 10−7 9.689× 10−6 9.916× 10−6
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Conclusion

I Stochastic evaluation of visibility using geometry proxies
I Unbiased images

I Theoretical framework
I New and experimental look at visibility

I Hope to inspire new future work
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Thank you for your attention

Outside proxies for the famous Nature scene [Pharr10]
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