To appear in the ACM SIGGRAPH 2011 conference proceedings

Filtering Solid Gabor Noise

Ares Lagae1,2 George Drettakis2
1Katholieke Universiteit Leuven 2REVES/INRIA Sophia-Antipolis
teaser.png
Existing noise functions either introduce discontinuities of the solid noise at sharp edges, which is the case for wavelet noise (b.1) and Gabor noise (c.1), or result in detail loss when anti-aliased, which is the case for Perlin noise (a.2) and wavelet noise (b.2). We present a new noise function that preserves continuity over sharp edges (d.1) and supports high-quality anti-aliasing (d.2).

Abstract

Solid noise is a fundamental tool in computer graphics. Surprisingly, no existing noise function supports both high-quality anti-aliasing and continuity across sharp edges. In this paper we show that a slicing approach is required to preserve continuity across sharp edges, and we present a new noise function that supports anisotropic filtering of sliced solid noise. This is made possible by individually filtering the slices of Gabor kernels, which requires the proper treatment of phase. This in turn leads to the introduction of the phase-augmented Gabor kernel and random-phase Gabor noise, our new noise function. We demonstrate that our new noise function supports both high-quality anti-aliasing and continuity across sharp edges, as well as anisotropy.

Video

Commercial Use

The code is licensed under a non-commercial license (see LICENSE.txt). Permissions beyond the scope of this license are be available from the authors.

Downloads

icon_pdf.png

Preprint

icon_pdf.png

Video

icon_pdf.png

Code

icon_pdf.png

Supp. Mat.

icon_pdf.png

Supp. Mat.

icon_pdf.png

Citation



Ares Lagae and George Drettakis Last updated on: