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MAP5, Université Paris Descartes

and CNRS, Sorbonne Paris Cité
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1 Efficient Procedural Evaluation

1.1 Impulse Generation

In this section, we give more details on the generation of impulses
(Sec. 6.3)

Sampling the Poisson distribution The procedural evaluation
of Gabor noise, as introduced by [Lagae et al. 2009], uses the al-
gorithm of Knuth [1997, 3.4.1] for sampling the Poisson distribu-
tion, which is designed for small means. This algorithm is appro-
priate for Gabor noise, but breaks down for bandwidth-quantized
Gabor noise, which operates at much larger impulse densities. In-
stead, we generate random numbers distributed according to a Pois-
son distribution with mean λ using the Gaussian approximation

P = ⌊λ +
√
λX + 1/2⌋, where X is distributed according to

the standard normal distribution. Note that the 1/2 is a continu-
ity correction which accounts for the discrete nature of the Poisson
distribution. We generate random numbers distributed according
to the standard normal distribution using the basic form of Box-

Muller transform X =
√

−2 ln (U1) cos (2πU2), where U1 and
U2 are distributed according to the standard uniform distribution.
Note that the polar form of the Box-Muller transform form requires
rejection sampling, which would slow down the evaluation.

Seeding Strategy The procedural evaluation of Gabor noise, as
introduced by [Lagae et al. 2009], uses sequential seeds for the
random number generators of neighboring cells, which results in
highly correlated sequences of random numbers. This is not an is-
sue for Gabor noise, since the algorithm of Knuth decorrelates the
sequences by consuming a variable amount of random numbers, but
it leads to artifacts for bandwidth-quantized Gabor noise, since the
basic form of the Box-Muller transform consumes a fixed amount
of random numbers. Instead, we seed the random number genera-
tor of each cell using an approach based on random number tables,
seed(b, x, y) = Pb[b%L] ⊕ Px[x%L] ⊕ Py[y%L], where Pb, Px

and Py are random number tables of size L (typically 256), and %
and⊕ denote modulo and XOR. This method is inspired by Kensler
et al. [2008]. However, they use permutation tables for Px and Py ,
which results in only L unique seeds for the L2 cells, and leads to
artifacts in the power spectrum. This is not the case for our method:
We have determined experimentally that for L = 256 and 32-bit
random numbers the average number of duplicates is less than 1.
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1.2 Validation

We have validated the procedural evaluation by verifying that the
power spectrum estimate of the procedural noise, obtained by av-
eraging 100 periodograms, converges to the power spectrum deter-
mined by the noise parameters.

1.3 CUDA Implementation

Previous implementations of Gabor noise use GLSL (OpenGL
Shading Language), and pass the noise parameters to the GLSL
shader in uniform variables. However, the amount of storage for
uniform variables on current GPU’s is not always sufficient for
bandwidth-quantized Gabor noise. Therefore, our implementation
uses CUDA instead of GLSL, which is a bit slower, but also more
flexible. Future GPU’s will most likely re-enable the use of GLSL.

2 Interactive Noise Editing

2.1 Wold Decomposition

In this section, we give more details on the Wold-like decomposi-
tion for editing (Sec. 8)

We found the periodic component to be less useful for editing. Our
analysis therefore starts by extracting a user chosen fixed number of
evanescent components, adding each in its own group. We typically
extract four components, and up to six on very structured spectra.
All remaining Gaussians are added to the random group which is
hidden from the user for clarity. The user may later decide to make
it visible if he wishes to edit it as well. Evanescent components
correspond to lines in the power spectrum. We extract them by
performing a sparse Hough transform: We enumerate all pairs of
Gaussians, each defining a line l in the power spectrum. During
this process we only consider Gaussians of small bandwidth. We
compute a score for each line based on the distance between the
line and all other Gaussians. For a line l the score is computed as:

S(l) =
∑

gi∈G

Kgi

ǫ+ dl(ωgi)

where G is the set of all Gaussians below the bandwidth threshold
(full width at half maximum below 0.06 in our implementation),
Kgi the Gaussian amplitude, ǫ = 0.01 and dl(ωgi) measures the
distance between the center of the Gaussian gi and the line in the
power spectrum. We keep the line with highest score as the first
evanescent component, grouping all Gaussians in its proximity, that
is all Gaussians whose center is closer to the line than a thresh-
old (0.03 in practice). We re–iterate the process until the chosen
number of components is found. This grouping approach is used
throughout the accompanying video. The thresholds are fixed and
are not exposed to the user.
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3 Color

3.1 Normalization of J -Values

We obtain a normalized value of J (T) using

Jn (T) =
3

2

J (T)∑
ξ ‖CI (ξ)‖2F

, (1)

where ‖·‖F is the Frobenius norm. This normalization makes
the J -values invariant to an orthogonal color transform and linear
change of contrast of I. Additionally, it can be shown that the Jn

takes values between 0 and 1 by making use of the special struc-
ture of correlation matrices, namely that the matrix of the Fourier
transform block-diagonalizes the 3MN×3MN correlation matrix
Σ(ξ1, ξ2) = CI (ξ1 − ξ2) into 3 × 3 rank-one blocks [Ferradans
et al. 2011].

Our experiments show that for most of our exemplars 0 ≈
J (TAJD) < J (TPCA) << J (TRGB) ≈ 1 (see
j_values.xls), which implies that (i) the RGB color space is
one of the worst possible color spaces for independent channel syn-
thesis (as already informally observed by many authors in Com-
puter Graphics), (ii) the difference between the PCA color space
and the maximally independent color space is relatively small. Our
maximally independent color space improves results over the PCA
color space, but in practice this difference is barely noticeable be-
cause of (ii). However, this experiment (for the first time to our
knowledge) does explain why the PCA color space has been so suc-
cessful for stochastic textures in previous work.

4 Misc

4.1 Image Resolution

We use an image resolution of 128×128, which we found to be
sufficient for all our examples. However, note that the procedural
evaluation is resolution and size independent (as illustrated in the
interactive noise editor), and that the parameter estimation can be
performed at a higher resolution if needed (although the κ parame-
ter might have to be adjusted).
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