
Compact, Fast and Robust Grids for Ray Tracing

Ares Lagae & Philip Dutré∗

Department of Computer Science

Katholieke Universiteit Leuven

Armadillo Atrium Dragon Conference Buddha Cruiser Asian Dragon Thai Statue Lucy Nature David

scene statistics

#tri’s 345 K 560 K 871 K 988 K 1.09 M 3.64 M 7.22 M 10.0 M 28.1 M 41.4 M 56.2 M

memory 11.9 MB 19.2 MB 29.9 MB 33.9 MB 37.3 MB 125 MB 248 MB 343 MB 963 MB 1.39 GB 1.89 GB

compact grid statistics

build time 0.05 s 0.08 s 0.11 s 0.12 s 0.14 s 0.39 s 0.80 s 1.17 s 3.15 s 9.12 s 5.81 s

render time 0.90 s 1.93 s 0.80 s 2.28 s 0.58 s 2.49 s 1.43 s 1.55 s 1.90 s 10.75 s 1.74 s

time to image 0.95 s 2.01 s 0.91 s 2.40 s 0.72 s 2.89 s 2.23 s 2.72 s 5.05 s 19.87 s 7.55 s

memory 8.32 MB 15.1 MB 21.9 MB 26.1 MB 27.5 MB 84.3 MB 155.3 MB 222.5 MB 606 MB 2.01 GB 1.17 GB

hashed grid statistics

build time 0.07 s 0.10 s 0.19 s 0.19 s 0.22 s 0.72 s 1.22 s 1.76 s 4.77 s 21.23 s 8.92 s

render time 0.89 s 1.86 s 0.79 s 2.22 s 0.57 s 2.52 s 1.25 s 1.43 s 1.53 s 10.07 s 1.29 s

time to image 0.96 s 1.97 s 0.98 s 2.41 s 0.79 s 3.25 s 2.47 s 3.18 s 6.30 s 31.30 s 10.21 s

memory 3.49 MB 8.16 MB 10.0 MB 13.3 MB 12.9 MB 35.0 MB 50.8 MB 78.8 MB 199 MB 1.52 GB 379 MB

Figure 1: Build time, render time, time to image, and memory usage for the compact grid method and hashed grid method presented in this
work, for various scenes. Images were rendered using simple shading, at a resolution of 1024×1024. Timings were obtained on a 3 GHz
Intel Xeon X5365 CPU.

Abstract

Ray tracing is becoming more and more the method of choice for
both offline global illumination simulations as well as interactive
visualizations. Because intersecting a ray with all objects in a scene
is usually very expensive, almost all ray tracers rely on acceleration
structures, trading preprocessing time and memory for faster ray-
object intersections.

The uniform grid was one of the first proposed acceleration struc-
tures. Over time, several other acceleration structures, such as
bounding volume hierarchies and kd-trees, have been introduced.
For static scenes, kd-trees are by many considered the best acceler-
ation structure. Uniform grids usually perform worse than kd-trees,
mainly because they are not adaptive. For dynamic scenes how-
ever, there is no consensus. The acceleration structure has to be
rebuilt every frame, and rather than minimizing render time, the
time to image, the sum of the build time and the render time, has
to be minimized. Building a grid can be done in linear time, while
other popular acceleration structures require super linear time. For
dynamic scenes, a shorter build time can compensate for a longer
render time. Therefore, a grid can result in a shorter time to im-
age than other acceleration structures that are usually considered
superior.

Algorithms are typically CPU-bound or memory-bound. The exe-
cution time of an algorithm that is CPU-bound mainly depends on
the speed of the CPU, while the execution time of an algorithm that
is memory-bound mainly depends on the access speed of the mem-
ory. Memory-bound algorithms can be made significantly faster
just by reducing the memory footprint of the data they work on.
Building a grid is memory-bound, while rendering is CPU-bound.
Therefore, reducing the memory footprint of a grid can results in
shorter build times.

∗e-mail: {ares.lagae,philip.dutre}@cs.kuleuven.be

Uniform grids were used in one of the first systems for interactive
ray tracing. Recent work on grids for ray tracing concentrated on
fast traversal, parallelizing the build process, and choosing the grid
size. In this work, we present two efficient methods for representing
and building a grid.

The compact grid method consist of a static data structure for rep-
resenting a grid with minimal memory requirements, more specifi-
cally exactly one index per grid cell and exactly one index per object
reference, and an algorithm for building that data structure in linear
time, that does not require additional memory.

The hashed grid method consists of a static data structure for rep-
resenting a grid that reduces memory requirements even further, by
using perfect hashing based on row displacement compression, and
a fast algorithm for building that data structure.

Figure 1 shows several results. For example, the time to image and
memory usage for the 1.89 GB David model is respectively 10.21 s
and 379.94 MB using the hashed grid method. We show that the
compact grid method and the hashed grid methods are more ef-
ficient in both time and space than traditional methods based on
linked lists and dynamic arrays. We also investigate parallell grid
building and rendering, we compare with other acceleration struc-
tures using the recent bwfirt benchmark, and we present a more ro-
bust grid traversal algorithm. We show that, for applications where
time to image or memory usage is important, such as interactive ray
tracing and rendering large models, the grid acceleration structure
is an attractive alternative.

References

LAGAE, A., AND DUTRÉ, P. 2008. Compact, fast and robust grids
for ray tracing. Computer Graphics Forum (Proceedings of the
19th Eurographics Symposium on Rendering) 27, 8.


