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Abstract

Today’s computer animations and movies with special effects have reached a high
level of realism and complexity. Modeling and animation software has become
more and more versatile and offers state of the art algorithms mimicking our
real world. Amongst those algorithms are the physics-based methods for solving
the dynamics of real-life phenomena.

This dissertation covers such algorithms for the simulation of fluid behavior
and the dynamics of objects. We specifically concentrate on the mutual interac-
tions between fluids and objects. Generally previous systems only simulate the
geometry of objects in combination with fluids, therefore treating the object as
an impenetrable solid. Yet most objects are made out of porous materials such
as sponges or cloth, meaning they absorb and diffuse fluid through their body
upon interaction, which affects their physical behavior.

In this work we present a novel simulation algorithm for porous flow through
a wide variety of fluid-absorbent deformable objects and granular volumes. We
introduce the physical principles governing porous flow, expressed by the law
of Darcy, into a Smoothed Particle Hydrodynamics (SPH) framework, making
fluid absorption and fluid flow inside the porous material possible. We show
how secondary effects of the absorbed fluid on the porous material can be incor-
porated in existing particle-based SPH frameworks for simulating rigid bodies,
elastic bodies, cloth and granular materials. This leads to the animation of
new unseen effects including mass and buoyancy changes, weakening of elastic
materials, sticky wet cloth, moist sand sculptures and mud formation.

To accommodate the new porous flow algorithm we build a large particle-based
framework. We not only implement various existing algorithms for simulating
fluid flow, elastic bodies, rigid bodies and granular materials in one unifying
framework, but we also create new simulation algorithms for cloth and sand in
the same unifying manner. We also present a software architecture for such a
unified SPH system to provide a solid foundation for particle simulations and
interactions.

In the design of these simulation models attention was spend on both the
physics aspects as the creativity of the animator. The result is a physics-based
animation package combining flexibility and solid simulation tools. Each of
the presented simulation algorithms is therefore illustrated with several short
computer animations showing the particular new effects.
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Samenvatting

Computer animaties en films met speciale effecten halen tegenwoordig een zeer
hoge graad aan realisme en complexiteit. Modelleer- en animatiesoftware is
steeds uitgebreider geworden en biedt nu de beste algoritmes om onze echte
wereld na te bootsen. Eén klasse van deze algoritmes zijn de fysisch gebaseerde
methodes waarmee echte fenomenen gesimuleerd kunnen worden.

Deze thesis behandelt zulke algoritmen voor de simulatie van vloeistoffen en
de dynamiek van voorwerpen. We concentreren ons specifiek op de onderlinge
interacties tussen vloeistoffen en voorwerpen. Bestaande systemen simuleren
typisch enkel de interactie van vloeistoffe n met de vorm van voorwerpen. Hier-
door behandelen ze het materiaal van het voorwerp als volledig ondoordringbaar.
Nochtans zijn veel voorwerpen gemaakt uit poreuze materialen zoals spons of
kledingweefsel, waardoor ze vloeistoffen kunnen absorberen en door hun poriën
laten stromen. Dit zal daarbij hun fysisch gedrag bëınvloeden.

In dit werk stellen we een nieuw simulatie algoritme voor poreuze stroming
doorheen een brede variëteit van vloeistofabsorberende voorwerpen en granulaire
materialen voor. We introduceren de fysische principes van poreuze stroming,
uitgedrukt door de wet van Darcy, in een SPH raamwerk. Hierdoor maken
we vloeistofabsorptie en vloeistofstroming doorheen het poreus materiaal mo-
gelijk. We tonen hoe secundaire effecten van de geabsorbeerde vloeistof op het
poreus materiaal aangebracht kunnen worden in bestaande partikel-gebaseerde
SPH systemen voor de simulatie van rigide en vervormbare voorwerpen, kleding
en zand. Dit resulteert in de animatie van nieuwe effecten zoals veranderin-
gen in massa en drijfvermogen, materiaalverzwakkingen, klevende natte kleding,
vochtige zandsculpturen en het vormen van modder.

Om het nieuwe algoritme voor poreuze stroming te illustreren bouwen we
een uitgebreid partikel gebaseerd raamwerk. We implementeren niet alleen
bestaande algoritmes voor de simulatie van vloeistoffen en rigide en elastische
voorwerpen in één uniform raamwerk, maar creëren ook nieuwe simulatiemod-
ellen voor kledingstof en zand op dezelfde uniforme manier. We presenteren ook
een software architectuur voor zo’n uniform SPH systeem zodat we een stevige
basis voor partikel simulaties en interacties verkrijgen.

Tijdens het ontwerp van deze simulatiemodellen gaven we zowel aandacht aan
de fysische aspecten als aan de creativiteit van de animator. Het resultaat is een
fysisch gebaseerd animatiepakket waarin flexibiliteit gecombineerd wordt met
solide simulatie tools. Daarom word ook elk van de voorgestelde simulatie algo-
ritmes gellustreerd met meerdere korte computer animaties waarin de specifieke
nieuwe effecten getoond worden.
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Chapter 1

Introduction

1.1 Physics-Based Animation in Computer Graphics

Making a computer animation or a movie with special effects can take up several
years. Even the shortest scenes not lasting any longer than a few seconds may
need several months before modelers and animators are satisfied with the result.
One of the reasons for this is that some of the visuals and behaviors of objects
should be as realistic as possible (and most often directors even want something
to be more spectacular than in real-life). Including real-life phenomena such
as water flow, clothing, wind, smoke, explosions, fractures etc. makes this goal
very hard to reach because modeling these behaviors manually quickly becomes
infeasible. Therefore in computer graphics one typically resorts to physics-based
animation algorithms as a starting point to simulate such effects in animations.

Physics-based animations are an exciting area of computer graphics in which
physics models are applied in a virtual world on virtual objects made out of
virtual materials. Often those models are simplified or approximated because
the goal of the animation is not to predict the phenomenon but to trick the
audience into believing the physical behavior they see is real. In addition the
animator wants to retain as much control and artistic freedom as possible. For
example it should be possible to make water flow into a specific direction or take
a certain shape. Other reasons to simplify the physics can be speed and time to
achieve interactive simulations. In other words, physics-based animations show
at least plausible simulations of the phenomenon.

It is this area of computer graphics this dissertation is situated in. Whether
one considers water splashing against the bow of boats, bath duckies dancing
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Chapter 1 Introduction

on the water surface or soil grains swirling along with water flow, their interplay
keeps amazing the observer. The complex dynamics of free-flow fluids are inter-
esting to study especially when combined with other objects. Specifically those
interactions in which the fluid changes the object it is interacting with form the
research of this work.

At the start of our research one of the key observations in computer graphics
animations was that fluids could only interact with objects at the surface, leaving
the objects unrealistically dry after contact with water. At best, small-scale
droplets can remain on the surface of an object [Wang et al., 2005]. Only the
geometry of the objects is accounted for, treating the object as a solid. Yet
not all objects are made out of impenetrable solid material; most materials
are porous when viewed at the appropriate scale. These materials absorb and
diffuse fluid through their volume upon interaction, which affects the physical
properties of the material. As before, manually modeling these effects on objects
is impractical. Therefore, we developed an algorithm to simulate fluid absorption
and its effects on various kinds of objects including rigid bodies, deformable
bodies and granular materials. Our algorithm can easily be integrated in existing
fluid-object simulators. We show how absorbed water can affect the buoyancy
of rigid objects, how water can weaken deformable objects, how water can make
clothing wet and stick to surfaces and how water can penetrate between sand
grains and form rigid sand structures or mud streams.

To accommodate such a variety of objects and materials a large physics-based
animation platform is needed. This platform needs to be able to solve the
Navier-Stokes equations for fluid flow, the law of Darcy for porous flow, Hooke’s
elasticity model and others. A unified simulation framework was developed
in order to simplify interactions between these kinds of objects and fluids. In
such a framework the same underlying method is used to solve the necessary
equations, hence the term unified. We chose to work with SPH which is a
popular method for simulating fluid flow. SPH is a particle-based integration
scheme which makes a continuous evaluation of physical properties possible on
points or particles discretely sampled over the volume of the fluid or object.

A unified particle framework not only allows for easier interactions including
porous flow, it can be structured in such a way the animator is given more
control over the simulated materials. We have designed an architecture for our
framework that makes abstraction of the physical dynamics and lets animators
model combinations and transitions of physical behaviors. This is needed in
order to produce phase changes such as melting a wax candle, but it can also
produce attractive visual effects such as characters arising from water, freezing
and falling apart, or turning into sand or dust. Such effects are up till now
respectively hard-coded or not possible within a single simulation system, but
need a pipeline consisting of several simulation and animation packages.

In summary, this dissertation extends the interactions which can be simulated
between fluids and objects in computer graphics animations. The main contri-
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1.2 Contributions

bution is the simulation of porous flow and its effects on various kinds of objects
and volumes. Hereto, building a solid simulation framework unifying physics
models using SPH was a necessity, but in the mean time provided new ways of
exploring physics-based animations.

Overview

The next section lists our contributions more concretely, whereas Section 1.3
provides an overview of how these contributions are structured into the chapters
of this dissertation. Important notes on the animations accompanying these
chapters are written in Section 1.4.

1.2 Contributions

In the field of research on animating interactions between fluids and objects our
main contributions are the following:

• A porous flow framework to simulate fluid absorption. We present
the simulation of a fluid flowing through a porous deformable material. We
introduce the physical principles governing porous flow, expressed by the
Law of Darcy, into the SPH framework for simulating fluids and deformable
objects. Contrary to previous SPH approaches, we simulate porous flow
at a macroscopic scale, making abstraction of individual pores or cavities
inside the material. Thus, the number of computational elements is kept
low, while at the same time realistic simulations can be achieved. Our
algorithm models the changing behavior of the wet material as well as the
full two-way coupling between the fluid and the porous material. This
enables various new effects, such as the simulation of sponge-like elastic
bodies and water-absorbing sticky cloth.

This work is a collaboration with Bart Adams (Katholieke Universiteit
Leuven / Stanford University) and was presented as a technical paper
at the annual ACM SIGGRAPH 2008 conference and published in ACM
Transactions On Graphics [Lenaerts et al., 2008].

• An SPH model for sand and fluid simulations. We present the sim-
ulation of fine granular materials interacting with fluids. We propose a
unified SPH framework for the simulation of both fluid and granular ma-
terial. The granular volume is simulated as a continuous material sampled
by particles. By incorporating our work on porous flow in this simulation
framework we are able to fully couple fluid and sand. Fluid can now perco-
late between sand grains and influence the physical properties of the sand
volume. Our method demonstrates various new effects such as dry soil

3



Chapter 1 Introduction

transforming into mud pools by rain or rigid sand structures being eroded
by waves.

This algorithm builds upon [Lenaerts et al., 2008] and was presented at the
annual Eurographics 2009 conference and published in Computer Graphics
Forum [Lenaerts and Dutré, 2009b].

• A unified SPH model for interactions between fluids and thin
shells or cloth. We present the two-way coupling of a fluid to thin
deformable shells in a unified particle model. We use SPH for the simu-
lation of both fluid and shells. Our cloth framework extends the work of
Solenthaler et al. [2007] which uses SPH to simulate deformable and rigid
volumes. Our results show realistic shell and cloth animations interacting
with fluids without any leaks.

These algorithms were developed as part of [Lenaerts et al., 2008], but were
presented in parallel as an ACM SIGGRAPH poster [Lenaerts and Dutré,
2008a].

• An architecture for Unified SPH Frameworks. In recent years, sev-
eral techniques have been proposed to simulate the physical behavior of
fluids and objects. A noticeable trend in particle-based simulation frame-
works is to unify the simulation of different kinds of materials, in order to
simplify interactions and phase changes. SPH is often used to solve the
necessary equations. While the resulting systems can simulate interactions
between different kinds of materials and simulate some phase changes, they
lack the freedom to model and simulate more complex animations. We pro-
pose an architecture for such a unified framework, providing not only the
means to integrate multiple material simulations, but also ways to continu-
ously fade between materials and freely combine materials. We implement
our architecture as an interactive simulation and animation prototype ap-
plication on the GPU. This allows the animator, within a single package, to
interactively model complex animations based on physical building blocks,
ranging from physically plausible phase changes such as melting wax to
the fictional dynamics of paint-based clothing.

This architecture is available as a technical report of the Katholieke Uni-
versiteit Leuven Lenaerts and Dutré [2009a].

1.3 Overview

The dissertation is structured as follows:

Chapter 2 and 3 introduce the concept of particle-based animations together
with an overview of the Smoothed Particle Hydrodynamics (SPH) interpolation
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1.4 Notes

scheme. We show how SPH is applied to fluid simulation.

Chapter 4 discusses how the elasticity model can be solved using SPH and
applies it to different materials ranging from highly deformable to extremely
stiff objects. We also extend and apply this SPH elasticity model to thin shells
and cloth animations in combination with fluids.

Chapter 5 shows how granular materials such as sand can be simulated using
an underlying SPH fluid. We also explore ways to render the fine grains.

Chapter 6 shows how interactions between fluids and objects and sand can be
enriched by introducing porous flow to simulate fluid absorption and its effects
on the object and sand volume.

Chapter 7 presents an architecture to structure the SPH models presented in
Chapters 3 – 5 to form one unified SPH framework in which combinations of
and transitions between materials are possible.

Chapter 8 formulates the conclusions of this work and provides outlooks to
future research.

1.4 Notes

The figures in this dissertation contain frames from animations showing the
effects of our algorithms. Though these frames were selected to be representative
we would like to point the reader to the full animations. These animations are
available on the enclosed DVD or can be viewed online at:
http://graphics.cs.kuleuven.be/publications/LenaertsPhD/.
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Chapter 2

Particle-Based Simulation

As discussed in Chapter 1 physics-based animation is an important tool to help
animate plausible visualizations of dynamic natural phenomena. This chapter
elaborates on such animations and discusses the particle approach as a way to
model both the object and its dynamics.

2.1 Introduction

In computer graphics to visualize a certain object or a scene containing several
objects a representation of their shape is needed. One of the early and still most
common representations is the polygon mesh. A polygon mesh is defined by a
set of vertices, edges and faces by which the surface of an object is approxi-
mated. Often the faces are adjacent triangles. To animate such a mesh-based
object using physics-based simulation algorithms the mesh’s vertices and faces
are updated conform the simulation. This works fine for objects with a clearly
defined surface such as cloth or trees, but the so-called fuzzy objects [Reeves,
1983] present a problem. Fuzzy objects include fur, fireworks, clouds, smoke,
fire and water which are difficult to model with classical mesh representations
since they do not have well defined and smooth surfaces and are quite dynamic
or free-form.

To simulate such phenomena the volume of the fuzzy object must be repre-
sented instead of the surface. However even objects which do have a well defined
surface may need a volumetric representation in order to accurately solve the
necessary physics model. Over the years many volumetric simulation methods
were developed, but can typically be categorized as Eulerian or Lagrangian ap-
proaches.
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In the Eulerian setting three-dimensional space is subdivided into voxels using
for example a regular grid. During the simulation the algorithm then moves
and/or deforms the fuzzy object through the grid. For each voxel the amount
of volume of the object is computed after which the simulator decides to which
neighboring voxels the volume needs to go. The basic simulation elements are
thus the voxels and the object moves through the simulation elements.

In contrast, the Lagrangian setting subdivides the object by sampling its
volume using point primitives or particles. The particles are the simulation
elements which the simulator moves along with the dynamics of the object.

In this work we have opted for the Lagrangian approach since the goal is to
extend interactions between fluids and objects. Defining multiple substances in a
single grid often requires the same grid resolution for each substance. Simulating
the interaction between a thin cloth and water for instance would then require a
high grid resolution which would result in long computation times. Typically a
different representation for the cloth such as a triangle mesh is chosen, but then
interactions between different simulation elements need to be worked out. In
a Lagrangian setting on the other hand interactions can be dealt with between
neighboring particles, which is far more flexible than defining interfaces in a grid.

Overview

After elaborating on particle-based simulations in Section 2.2, Section 2.3 contin-
ues with a discussion of Smoothed Particle Hydrodynamics (SPH) to interpolate
continuous properties from the discrete particles. Solutions for visualizing the
particles volume, including surface generation and surface deformation, are pro-
vided in Section 2.4. The concluding Section 2.5 gives an overview on how SPH
will be used throughout this work.

2.2 Particle-Based Simulation

The concept of particles or particle systems was first introduced by Reeves [1983]
to simulate fuzzy objects in computer graphics. As mentioned earlier fuzzy
objects are difficult to model with mesh representations since they have ill defined
surfaces and are quite dynamic instead of limited to rigid body motion. A
particle system however is essentially a point representation which provides much
more freedom to model and visualize. Often no connectivity between particles is
necessary (e.g., fur, fireworks, water fountains, ...), which is inherently present
in mesh-based approaches. Deforming the surface mesh of a fluid which should
split and merge during splashes is not trivial [Wojtan et al., 2009], but deforming
a particle volume and extracting a mesh afterwards is much easier.

8



2.2 Particle-Based Simulation

Particle Attributes

To model such phenomena the user can set certain global parameters controlling
the overall behavior and local particle-specific parameters such as a position p
and a color c. A particle can have a particular mass m and a shape taking up a
certain volume V which has a certain density ρ. During its lifetime t the particle
may move at a certain velocity v through space influenced by an acceleration a.

Particles can be created deterministically or stochastically in space before
and/or during the simulation. Particle attributes can also stochastically vary to
create more naturally looking effects.

Particle Dynamics

Particles are brought to life by moving them in three-dimensional space and
possibly changing their attributes (for example color or volume). Using Newton’s
second law an acceleration a based on external forces f and the gravitational
acceleration g can be applied to the particles:

a =
dv
dt

=
f
m

+ g (2.1)

Particles are then integrated in time using the forward Euler method. This boils
down to moving the particles by their current velocity over a period of time dt,
also called the time step. This time step can vary between 10−6s to 10−3s in our
simulations (see Equation 3.15). Iterating this procedure effectively simulates
the particle behavior over a larger period of time. We call one such iteration
a step. A physics-based animation is then produced by visualizing a subset of
steps in sequence. We call those particular steps animation frames. Typically
25 frames per second are shown in sequence creating the illusion of motion. So
to produce one animation frame for a simulation time step of 10−3s we need 40
iterations.

In this work we will focus on more advanced particle dynamics requiring
particle-particle interactions to simulate physics models for different kinds of
materials. As illustrated in Figure 2.1 we need certain particles retain the shape
of a solid object, while others should flow freely over the surface of another
object. To solve complex physics models a more advanced solver is needed. A
popular technique for computing physical properties and forces on particles is
Smoothed Particle Hydrodynamics (SPH). In the next section we provide an
overview on SPH and show how it can be used to visualize and deform sur-
faces around particle volumes. In the next chapters we will use SPH extensively
to solve the physical equations for simulating fluids, elastic materials, granular
materials and porous materials.
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Object

Particle pi

Fluid

Figure 2.1: A Lagrangian simulation setup. Fluids and objects are sampled
with particles on which the forces of the material model are applied. Forces
are integrated in time to solve the flow of the fluids and the movements of the
objects.

2.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics was first created to study fission in rotat-
ing stars by Lucy [1977] and Gingold and Monaghan [1977]. It has since been
applied to astrophysical simulations such as star formations, solar systems, and
supernovae. We refer to the work of Monaghan [1992] for a good overview.

Desbrun and Cani introduced SPH to the computer graphics community in
1996 and later Müller et al. [2003] popularized the particle method for solving
fluid flows. We will discuss this application to fluids and other materials in
Chapters 3 tot 5. Here we start by giving an overview on the SPH method and
its principles which will be used throughout this work.

Basically SPH is an interpolation technique to provide a continuous field from
the discrete particle definition. Using kernels W continuous properties A(x) can
be derived as a weighted sum of the properties A(xj) defined in all particles pj

with volume Vj = mj/ρj :

A(x) =
∑

j

VjA(xj)W (x− xj , h). (2.2)

The function W (x − xj , h) is a radially symmetric kernel function with a fi-
nite support range (or smoothing length) h. W must be even (i.e. W (r, h) =
W (−r, h)) and normalized over space:

∫

Ω

W (r, h)dr = 1, (2.3)
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Figure 2.2: A plot of the Poly6-kernel (bold) for a smoothing length h=1, to-
gether with the first and second derivatives (respectively thin and dashed). The
kernel is plotted as a radially symmetric function (i.e. r = |r|).

where r = x − xj. Other requirements ensuring the consistency of the SPH
approximations are described in [Liu and Liu, 2003]. One such smoothing kernel
is the Poly6 -kernel proposed by Müller et al. [2003]. Here, it is given in its 3D
normalized form:

W (r, h) =
315

64πh9

{
(h2 − r2)3 0 ≤ r < h
0 otherwise,

(2.4)

where r = |r|. A plot of the function is provided in Figure 2.2.
These radial kernels suggest spherical regions the particles occupy. Hence each

particle is often represented as a sphere of radius Ri = 3

√
3Vi

4π [Desbrun and Cani,
1999].

In SPH the derivatives of a discretized function A can be obtained using the
derivatives of the smoothing kernel:

∇A(x) =
∑

j

VjA(xj)∇W (x− xj, h), (2.5)

∇2A(x) =
∑

j

VjA(xj)∇2W (x− xj, h). (2.6)

The first and second derivatives of the Poly6-kernel are plotted in Figure 2.2.
The main advantage of using a kernel with a finite support is that Equa-

tion 2.2 and its derivatives (Equations 2.5 and 2.6) only have to be evaluated
for neighboring particles (i.e. particles within the support range of the point to
be evaluated) instead of all particles. Typically the smoothing length h is chosen
2 to 3 times the particle’s radius. In practice range queries can be accelerated
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using a grid of cells of size h. Particle neighbors can then easily be found by
testing the particle’s own cell and the neighboring cells. This reduces the time
complexity for an SPH approximation from O(N2) to O(NM), where N is the
number of particles and M the average number of particles per cell.

Normalization

An SPH approximation heavily depends on the particles within the support
range. When too few particles are found the value is approximated lower
than the theoretical value. As an example we have approximated the func-
tion f(x, y) = x2 + y2 on a 100 × 100 grid of particles between [0, 1] in both
dimensions (Figure 2.3(a)). Figure 2.3(c) plots the error of the approximation.
As can be seen in both Figures 2.3(a) and 2.3(c) the error is concentrated at the
edges of the surface where less neighboring particles are found.

Normalizing the SPH approximation (Equation 2.2) leads to Corrected Nor-
malized Smoothed Particle Hydrodynamics (CNSPH) [Vignjevic et al., 1995]:

A(x) =

∑
j VjA(xj)W (x− xj, h)∑

j VjW (x− xj , h)
. (2.7)

The resulting approximation is visualized in Figure 2.3(b) and the error of the
normalized approximation is plotted in Figure 2.3(d). By normalizing the ap-
proximation a 10 times smaller error is obtained.

2.4 Visualization

As the next chapters will illustrate, a wide range of objects and effects can be
simulated with particles. Particles sample and represent the shape of flows or
objects. This shape needs to be extracted again for visualization purpose. In
some cases such as for example fireworks or sparks, particles can easily be visu-
alized by rendering colored points. However the visualization cannot always be
done using particles or point primitives. Smoke for example needs a volumetric
rendering and elastic objects and fluids need an actual surface. It is clear the
visualization depends on the type of material that is simulated.

While point primitives can be used to visualize the surface [Müller et al., 2003;
Adams, 2006], they require extra work like resampling the surface to avoid holes.
In contrast triangle meshes are easier to render and are supported on common
graphics hardware. Therefore, extracting or matching a surface mesh is far more
popular and we too will focus on a visualization using surface meshes for fluids
and objects.
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(a) SPH approximation (b) Normalized SPH approximation

(c) Error for SPH approximation (d) Error for normalized SPH approximation

Figure 2.3: (a) An SPH approximation of the function f(x, y) = x2 +y2 and (c)
the approximation error. The error is concentrated at the edges of the surface
where less particles are found.(b) A normalized SPH approximation of the same
function has a better accuracy (d) by weighing the approximation.

2.4.1 Iso-Surface Extraction

Typically a surface around a particle volume is extracted as an iso-contour of
an implicit function defined by the particles. A color field is such an implicit
function which is 1 at the particle locations and 0 everywhere else. The iso-level is
then chosen freely between 0 and 1, depending on the desired surface (a narrow
fit or rather blobby). SPH (Equation 2.2) can then be used to continuously
evaluate the implicit function:

c(x) =
∑

j

VjW (x− xj, h). (2.8)
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(a) Color field and iso-surface (b) Marching Cubes mesh

Figure 2.4: (a) The color field defined by a set of particles together with an iso-
contour representing the surface. (b) The surface mesh extracted using Marching
Cubes (MC) on an underlying grid.

Figure 2.4(a) illustrates the iso-surface for a color field defined by a set of par-
ticles in two dimensions. One of the downsides of this approach are the so-
called blobby surfaces which arise when particles are not perfectly co-planar.
Solenthaler et al. [2007] build upon a method from Zhu and Bridson [2005] to
try to solve this by using the positions of neighboring particles in the color field
construction. Though the results from their approach are still not perfect, we
use their surface definition in our work since no other approach achieves signifi-
cantly better results. We refer the reader to the original work of Solenthaler et al.
[2007] for the exact description of the surface definition and a comparison with
the definition of Zhu and Bridson [2005].

The surface reconstruction can be done at render time in a ray tracer or as a
post-simulation process using the popular Marching Cubes algorithm proposed
by Lorensen and Cline [1987] to triangulate the iso-contour. In the latter case,
the color field is evaluated on an underlying fixed grid and triangles are created
accordingly (see Figure 2.4(b)).

2.4.2 Shape Matching

When simulating deformable objects often a detailed surface mesh is available
beforehand. The mesh volume is then sampled with particles on which the
simulation is performed. By linking the particle displacements uj to the vertices
viof the mesh in a reference configuration, the mesh can be displaced as well and
moves along with the simulation. Müller et al. [2004a] propose to use the SPH
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t+∆t

Reference Deformed 

pj
vi

pj
vi

Figure 2.5: A surface mesh is displaced along with particle displacements. In
the reference system vertices vi are linked to neighboring particles pj . During the
simulation particle displacements from the reference configuration are tracked
and propagated to a displacement for the vertices to create a deformed mesh.

approximation of ∇u in a first order accurate approximation of the vertices’
displacements:

vi =
∑

j

(uj +∇uT
j (xi − xj))W ij , (2.9)

where

W ij =
W (xi − xj , h)∑
j W (xi − xj , h)

, (2.10)

W (r, h) =
{

(1− r2

h2 )3 0 ≤ r < h
0 otherwise,

(2.11)

and r = |r|. This approximation exactly matches the surface mesh to linear
transformations of the particles. For large deformations including splitting of
the particle volume however the surface mesh needs to be resampled, meaning
triangles should be split and connected to new neighboring particles. Otherwise
the triangles would stretch over the gap masking the actual behavior of the
simulation underneath.

Except for fluid flows and sand volumes, we use shape matching for all objects
requiring a detailed and consistent surface mesh.

2.5 Conclusion

In this chapter we discussed SPH as an interpolation method to obtain con-
tinuous evaluations of discrete particle values. The main SPH equation (Equa-
tion 2.2) and its derivatives (Equations 2.5 and 2.6) will be used to approximate
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various physics models, such as the Navier-Stokes equations for fluid flow and
the law of Darcy for porous flow, throughout the following chapters. A visual-
ization of an SPH interpolation was presented in the form of a color field. Color
fields can be used to generate a surface around a particle volume to visualize in
traditional mesh-based renderers. They can however serve more purposes. In
the next chapters we will show how color fields can help computing the interface
tension between fluids (Chapter 3), how they can advect sand grains (Chap-
ter 5) and finally how wet regions on surfaces can be visualized using color fields
(Chapter 6).
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Chapter 3

Fluid Animation

Smoothed Particle Hydrodynamics (SPH) was presented in the previous chap-
ter as an interpolation scheme for dynamic particle systems. In this chapter we
will show how SPH can be used to approximate fluid behavior. More concretely,
we provide an overview on how the Navier-Stokes equations which describe fluid
dynamics, can be solved using SPH.

3.1 Introduction

In the last two decades, many techniques have been developed to simulate
the physical behavior of fluids and objects in computer graphics. Eulerian
fluid models were introduced by Foster and Metaxas [Foster and Fedkiw, 2001;
Foster and Metaxas, 1997, 1996] and Stam [1999]. Over the years Eulerian
fluid models were successfully coupled to rigid [Carlson et al., 2004] and de-
formable objects [Guendelman et al., 2005; Robinson-Mosher et al., 2008]. In
recent years people have also been investigating combinations of Eulerian and
Lagrangian fluid models to address the weaknesses of grid-based approaches with
the strengths of particles [Losasso et al., 2008; Hong et al., 2008a; Lee et al.,
2009].

Those Lagrangian methods became popular in the graphics community with
the work of Desbrun and Cani [1996] and were applied to fluids by Müller et al.
[2003]. The latter are typically based on the Smoothed Particle Hydrodynamics
(SPH) method (see Chapter 2). Premoze et al. [2003] concurrently introduced
the Moving Particle Semi-Implicit (MPS) method in computer graphics as an
alternative for solving particle-based fluids. Later, Müller et al. [2005] also
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started to focus on the interaction between different fluids, which was refined
by Solenthaler and Pajarola [2008] to handle density contrasts at the interface.
Interactions with rigid objects [Keiser et al., 2005; Becker et al., 2009b] and de-
formable objects [Müller et al., 2004b; Solenthaler et al., 2007] have been sim-
ulated. Clavet et al. [2005] simulated viscoelastic fluids and their interaction
with rigids, whereas Krǐstof et al. [2009] used SPH fluids to hydraulically erode
landscapes.

One of the disadvantages of particle-based fluids is they often produce com-
pressible fluids. This issue has only recently been addressed by several authors
[Colin et al., 2006; Becker and Teschner, 2007; Solenthaler and Pajarola, 2009;
Sin et al., 2009].

As Müller et al. [2003] intended, SPH is perfectly suited for interactive simula-
tions and can be seen as a research topic on its own in computer graphics. Inter-
active SPH simulations and visualizations of rivers on the GPU were made possi-
ble by Kipfer and Westermann [2006]. The performance of SPH fluid simulations
was increased by adaptively sampling the fluid volume [Desbrun and Cani, 1999;
Adams et al., 2007; Hong et al., 2008b], while others proposed SPH implementa-
tions that exploit the capabilities of current graphics hardware [Kolb and Cuntz,
2005; Hegeman et al., 2006; Harada et al., 2007]. Also combinations like adap-
tive resampling schemes on the GPU are investigated [Yan et al., 2009].

Overview

Fluid flow is governed by the Navier-Stokes equations, which we solve using SPH
(Section 3.2). In Section 3.2.1 we discuss custom designed smoothing kernels to
better approximate fluid behavior. The importance of incompressibility of fluids
is shown in Section 3.3. Finally, we treat fluid simulations using multiple particle
resolutions (Section 3.4).

3.2 Fluids

Central in fluid dynamics stand the Navier-Stokes equations, written down by
Claude-Louis Navier and George Gabriel Stokes in the 19th century. The Navier-
Stokes equations dictate the conservation of mass (Equation 3.1) and the con-
servation of momentum (Equation 3.2) for the dynamics of fluids. Here, the
incompressible variant of the Navier-Stokes equations are given in a Lagrangian
form:

∇·v = 0, (3.1)

ρ(
Dv
Dt

) = −∇P + µ∇2v + ρg, (3.2)

where v is the fluid velocity, ρ the density, P the pressure, µ the dynamic
viscosity constant and g the gravitational acceleration. Since the particles move
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with the fluid, the substantial derivative Dv/Dt is simply the time derivative of
the velocity field. In a Lagrangian setting where each particle has a fixed mass
Equation 3.1 can be discarded, making only Equation 3.2 of importance for
particle-based fluid simulations. Analogous to Equation 2.1 this can be written
as:

a =
1
ρ
(fpressure + fviscosity + fexternal) (3.3)

The different terms of the right hand side of Equation 3.3 are solved using SPH.
Since SPH approximations require the volume of each particle (see Equation 2.2),
we first need to compute the density ρ in each particle. Luckily, we can still
compute this using the basic SPH Equation 2.2:

ρi =
∑

j

mj

ρj
ρjW (xi − xj , h) =

∑

j

mjW (xi − xj , h). (3.4)

However, since surface particles typically have less neighbors than particles
inside the fluid volume their density is approximated lower. Using the princi-
ples of Corrected Normalized Smoothed Particle Hydrodynamics (CNSPH) (see
Chapter 2) we solve this by normalizing Equation 3.4:

ρ′i =

∑
j mjW (xi − xj , h)∑
j VjW (xi − xj , h)

. (3.5)

Though this requires an extra iteration over the particles (Vj = mj/ρj), the
density ρ′ is used throughout the SPH solver so a better approximation benefits
further SPH approximations. In the remainder of the text we will use ρ′ from
Equation 3.5 but simply write ρ.

The pressure P can be computed using a simplification of the ideal gas equa-
tion P = kp(ρ−ρ0), where ρ0 is the rest density, presented by Desbrun and Cani
[1996]. This equation however can result in rather highly compressible fluids,
which negatively influences the simulation (see Section 3.3). Therefore we use
Tait’s equation [Monaghan, 1994; Becker and Teschner, 2007] which limits the
density fluctuations more strictly:

P = B

((
ρ

ρ0

)γ

− 1
)

, (3.6)

with γ = 7 and

B =
ρ0c

2
s

γ
, (3.7)

where a higher speed of sound cs enforces lower density variations. We refer the
reader to [Becker and Teschner, 2007] for a description and a way to estimate
the speed of sound factor to achieve only weakly compressible fluids (< 1%).
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The pressure force fpressure and the viscosity force fviscosity can be computed
using the SPH derivative Equations 2.5 and 2.6:

fpressure
i = −

∑

j

VjPj∇W (xi − xj, h), (3.8)

fviscosity
i = −µ

∑

j

Vjvj∇2W (xi − xj, h). (3.9)

However this would yield asymmetric forces, which can easily be verified for two
particles. We use the symmetrized versions which do conserve linear and angular
momentum as described in [Liu and Liu, 2003; Monaghan, 2005]:

fpressure
i = −ρi

∑

j

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇W (xi − xj, h), (3.10)

fviscosity
i =

{ −ρi

∑
j mjΠij∇W (xi − xj, h) vT

ijxij < 0
0 vT

ijxij ≥ 0,
(3.11)

with vij = vi − vj , xij = xi − xj and vT
ijxij > 0 being equivalent to ∇·v > 0.

Πij is given as:

Πij = −ν

(
vT

ijxij

|xij |2 + ǫh2

)
(3.12)

with the viscous factor:
ν =

2µhcs

ρi + ρj
, (3.13)

where µ is the viscosity constant. The term ǫh2, with ǫ = 0.01, prevents singu-
larities when |xij | = 0.

Popular and less expensive pressure and viscosity force computations were
proposed by Müller et al. [2003], but in our experience Equations 3.10 and 3.11
produce more realistic results.

Surface Tension

Equation 3.6 can result in negative pressures when the approximated density
is lower than the rest density ρ0. This often occurs near the surface despite
the compensation of Equation 3.5. The resulting effects on the fluid simula-
tion are comparable with the effects of surface tension. However the speed
of sound cs is tuned towards incompressibility making the reaction to nega-
tive density fluctuations too strong. Therefore we only allow positive pressures
(P+ = max(0, P )) and compute the surface tension force separately according
to Becker and Teschner [2007]:

fsurface
i = −κ

ρi

mi

∑

j

mj(xi − xj)W (xi − xj, h), (3.14)

20



3.2 Fluids

-1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1

-15

-10

-5

5

10

15

20

25

30

(a) Spiky-kernel
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(b) Viscosity-kernel

Figure 3.1: Plots of (a) the Spiky-kernel and (b) the Viscosity-kernel (bold)
together with the first and second derivatives (respectively thin and dashed).
The kernels are plotted as radially symmetric functions (i.e. r = |r|).

where κ is the surface tension coefficient. Equation 3.14 is added to the force
summation in Equation 3.3.

Adaptive Time Steps

The choice of the time step in the time integration is of great importance for
the stability of the simulation. We use the Courant-Friedrichs-Lewy (CFL)
condition, the viscosity constant and the force terms to derive a suitable time
step [Monaghan, 1992]:

∆t = min

(
0.25 ·mina

(
h

|fa|

)
, 0.4 · h

cs · (1 + 0.6µ)

)
, (3.15)

where fa are all forces.
Intuitively this means the smaller the particles or the higher the viscosity

of the fluid, the smaller the time steps and the longer the simulation takes to
produce an animation frame.

3.2.1 Custom Smoothing Kernels

The choice of the smoothing kernel can influence the interpolated values, espe-
cially the derivatives of the smoothing kernel are important for the computation
of the Navier-Stokes equations. Computing the pressure density force (Equa-
tion 3.10) requires the first derivate of the Poly6-kernel which drops to zero
around the origin (see Figure 2.2), while high pressure forces are desired be-
tween particles moving too close to each other. Therefore, Desbrun and Cani
[1996] proposed a Spiky kernel:

WSpiky(r, h) =
15
πh6

{
(h− r)3 0 ≤ r < h
0 otherwise.

(3.16)
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As can be seen in Figure 3.1(a) the first derivative behaves as desired.

Similar for the second derivative, Müller et al. [2003] proposed a special Vis-
cosity kernel to better smooth the velocity field (Figure 3.1(b)):

WV iscosity(r, h) =
15

2πh3

{
− r3

2h3 + r2

h2 + h
2r − 1 0 ≤ r < h

0 otherwise.
(3.17)

These kernels, or rather their gradient and laplacian, are also cheap to com-
pute. We adopt these kernels in our SPH fluid solver.

3.3 Compressible Fluids

The original SPH fluid simulation algorithms proposed by Desbrun and Cani
[1996] and Müller et al. [2003] cannot guarantee incompressible fluid simula-
tions. Using a compressible fluid solver not only results in a loss of volume, but
also greatly influences the stability and the dynamics of the particle simulation.
We illustrate this in Figure 3.2. A jet of fluid is aimed downwards into an empty
container. We simulate the fluid using different speed of sounds cs in Equa-
tion 3.6. The top row shows the result of using a speed of sound which allows up
to 10% compressibility. The middle rows only allows 1% compressibility. The
particles of the weakly compressible fluid behave much more stably and the fluid
surface is much smoother. A visualization using an extracted surface mesh is
given in the bottom row. The fluid is simulated using approximately 132,000
particles.

The reason why the original SPH algorithms cannot guarantee incompressible
fluids, is the used pressure equation, P = kp(ρ − ρ0), which linearly reacts to
density fluctuations. Compressing a fluid will produce a pressure force which
only gradually builds up the appropriate reaction, even with a high kp con-
stant. Becker and Teschner [2007] introduce Tait’s equation (Equation 3.6) in
the graphics community to faster react to these density deviations. This effec-
tively avoids small explosions of particles in compressed regions. Particles now
better maintain an even sampling pattern over the fluid volume. As a result the
SPH approximations are more accurate.

For this reason we adopted the use of Tait’s equation in our simulation frame-
work. Not only our fluid simulations benefit from this adaptation, but our sand
simulation algorithm (Chapter 5) and the algorithm for simulating porous flow
(Chapter 6) as well. In future work, it would be interesting to look into re-
cently proposed algorithms for incompressible particle-based fluid simulations
[Solenthaler and Pajarola, 2009; Sin et al., 2009].
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Figure 3.2: The importance of incompressibility of fluid simulations is illus-
trated. Compressible fluids (top row, < 10% compressible) can result in more
unstable particle behavior and less smooth surfaces than weakly compressible
simulations (middle row, < 1% compressible). The bottom row shows a nearly
incompressible simulation visualized using an extracted surface mesh.

3.4 Multi-Resolution Particles

In a typical SPH simulation of fluid behavior all particles are of the same size.
This does not necessarily have to be the case. Higher resolution particles can
be used in regions requiring more detail, while in other regions lower resolution
particles suffice. In this case computational effort is focussed in the desired
regions, hereby effectively shortening simulation times. Being able to handle
differently sized particles also comes in handy when mixing fluids with other
fluids or objects. Certain objects may not need the same level of detail to
adequately simulate their dynamics.

To these ends some adaptive particle models have been proposed in computer
graphics. Early work by Desbrun and Cani [1999] presented an adaptive dis-
cretization of both space and time for SPH based on density differences between
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particles. Adams et al. [2007] propose a similar adaptive resampling technique
but use the distance to the surface as a measure.

For this work the interaction between multi-resolution particles is more im-
portant than resampling schemes and as such we will focus on the right SPH
approximations in a heterogeneous particle system in this section.

Individual Smoothing Kernels

Regions sampled with higher resolution particles need smaller smoothing kernels
to accurately approximate the spatial variations. Otherwise the small variations
would be lost during smoothing. Therefore, the SPH smoothing length should
be related to the size of the particle. Since a particle is isotropic, its volume in
rest can be seen as a sphere of radius ri:

4
3
πr3

i =
mi

ρ0
. (3.18)

Desbrun and Cani [1999] then propose to set the smoothing length hi propor-
tional to ri:

hi = ǫ 3

√
mi

ρ0
. (3.19)

We use a value of 1.55 for ǫ to ensure an average number of neighboring particles
around particle pi in rest conditions.

Notice that using higher resolution particles to provide more detailed simula-
tions not only increases the total number of particles, but also requires a smaller
time step (Equation 3.15) leading in both cases to longer simulation times.

Shooting - Gathering

Using individual smoothing lengths for particles means the kernels W (rij , h) in
Equations 3.4 to 3.14 should be replaced by either W (rij , hi) or W (rij , hj). The
first weighting scheme is a gathering method since the processed particle uses
its own kernel to gather the contributions of neighboring particles. The second
weighing scheme is a shooting method since the contributions of neighboring
particles are weighted according to their kernels.

Desbrun and Cani [1999] propose to combine shooting and gathering by av-
eraging the kernels:

W (rij , hij) =
W (rij , hi) + W (rij , hj)

2
. (3.20)

The first and second kernel derivatives are obtained similarly. Using both shoot-
ing and gathering assures symmetric forces between pairs of particles, which
shooting or gathering separately cannot guarantee.
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(a) Active Query

hi

hj
NNi={pk,pl,pm,pj}

findNN(pi,hi){

    ...
    if(hj<hi) add pi to NNj
}

NNj={pk,pn,pi}

(b) Passive Query

Figure 3.3: Two types of nearest neighbor queries in a multi-resolution setting.
(a) Use the largest support range hmax and possibly test too many particles.
(b) Use the particle’s support range hi and update neighbor lists of neighboring
particles when hj < hi.

It is important to note that the query for neighboring particles needs to
be adapted. Two particles are now considered neighbors when |xi − xj | <
max(hi, hj). The easiest solution is to query the particles using the largest
smoothing length hmax and then reject particles when |xi − xj | > hi + hj . In
this case we are actively searching for particles pj with a greater smoothing
length. However, this leads to more distance tests in regions of higher resolu-
tion particles. A passive solution is to query neighboring particles for particle
pi using its own smoothing length hi and add itself to the list of neighboring
particles of particle pj when pj has a smaller smoothing length hj < hi. Both
solutions are illustrated schematically in Figure 3.3.

3.5 Conclusion

In this chapter we have provided an overview on fluid simulation using the sim-
ple but powerful SPH interpolation scheme. Several adjustments such as sym-
metrized force computations and specially designed weighting kernels increase
the realism of the fluid simulation.

Our work deals with interactions between fluids and objects. It is impor-
tant to realize that the sampling resolution of different kinds of objects and
fluids does not necessarily have to be the same. Therefore we discussed the
shooting-gathering approach to deal with multi-resolution particles. Further-
more, in Chapter 6 we will introduce porous flow into the unified simulation
system which will also create multi-resolution particles during fluid absorption
and emission.
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Chapter 4

Elastic Animation

The freeform nature of fluids makes them an excellent medium to combine
with solid objects. Objects can not only shape fluids but can also influence
the fluid behavior in many interesting ways. In our daily lives we see these
interactions; droplets on windows, pouring our favorite soda, a rubber ducky
floating on water et cetera. Naturally in computer graphics we want to be able
to simulate these interactions and effects.

It should be clear right after the simulation of fluids, the simulation of de-
formable objects is of great importance to this work. In this chapter we discuss
an SPH approximation of the elasticity model used to simulate deformable ma-
terials. We show how this model can be extended towards thin shells and cloth
simulations based on [Lenaerts and Dutré, 2008b]. Finally, we show how fluids
can interact with objects in a natural way.

4.1 Introduction

One of the early models for simulating deformable objects in computer graphics
was [Terzopoulos et al., 1987] which uses finite differences to solve the elasticity
equations. Later they employed a mass-spring system (MSS) for simulating
and melting deformable bodies [Terzopoulos et al., 1989]. Mass-spring systems
are also popular for simulating cloth [Baraff and Witkin, 1998; Desbrun et al.,
1999]. Tonnesen [1991] uses Lennard-Jones potential functions as another way
to strengthen particles together. After their seminal work on brittle fractures
O’Brien et al. introduced strain state variables to simulate elastic materials and
ductile fractures [O’Brien and Hodgins, 1999; O’Brien et al., 2002].
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Chapter 4 Elastic Animation

Müller et al. [2004a] used the Moving Least Squares (MLS) procedure and
particles to animate elastic objects. Later, Pauly et al. [2005] built upon their
work to add fractures to deformable solids. In 2007 Solenthaler et al. ported the
MLS system from [Müller et al., 2004a] to SPH and added some modifications
to the reference shape of the deformable object.

Fluids interacting with objects have been studied extensively leading to sev-
eral models for interactions between fluids and rigid objects [Carlson et al.,
2004; Keiser et al., 2005; Clavet et al., 2005; Becker et al., 2009b], fluids and de-
formable objects [Müller et al., 2004b; Chentanez et al., 2006; Solenthaler et al.,
2007; Robinson-Mosher et al., 2008] or even fluids interacting with granular ma-
terials [Rungjiratananon et al., 2008].

The work of Solenthaler et al. [2007] on SPH simulations of elastic materials
served as a basis for all our deformable objects. In [Lenaerts and Dutré, 2008b]
we proposed an extension to their work to be able to simulate thin shells in
combination with fluids and presented the SPH simulation of cloth.

In the next chapters we will show how some of the principles discussed in this
chapter can be used to simulate granular materials such as sand (Chapter 5)
and how they are modified to be able to simulate the effects of absorbed water
on the body (Chapter 6).

Overview

The elasticity model from Solenthaler et al. [2007] is discussed in Section 4.2
and serves as a starting point for the simulation of rigid bodies (Section 4.3)
and our extension to be able to simulate thin shells and cloth (Section 4.4). The
results are shown and discussed in Section 4.5 and a conclusion is formulated in
Section 4.6.

4.2 Deformable Bodies

The method from Solenthaler et al. [2007] for modeling deformable bodies is
actually an extension of the work of [Müller et al., 2004a; Keiser et al., 2005].
Instead of MLS Solenthaler et al. use SPH to compute strain and stress in the
deformable body. The advantage of SPH over MLS is that it can handle coarsely
sampled and coplanar particle configurations, which they needed in order to
simulate melting behavior and which motivated us to formulate extensions to
thin elastic shells and cloth simulations (Section 4.4).

The basic idea is to store the initial neighborhood of each particle of the
deformable body in rest. This is called the locally undeformed object condition
or the reference neighborhood and consists of a reference volume v̄ and distance
vectors r′ij to the local neighbors (see Figure 4.1). During the simulation the
current particle neighborhoods are compared to the reference neighborhoods.
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Elastic neighborhood

pi

d

pi

Cloth neighborhood

d

Figure 4.1: Each elastic (left) and cloth (right) particle stores a reference neigh-
borhood (dashed vectors and lines respectively). Displacements d from this
reference neighborhood translate into a strain ǫ from which the stress σ can
be computed using Hooke’s law. However the orientation of neighboring cloth
particles is free to change, hereby allowing for folds.

We will now provide an overview on the computation of the elastic forces
felastic. For the derivation and extra details we refer to [Müller et al., 2004a;
Solenthaler et al., 2007]. More information on the elasticity model can be found
in [O’Brien and Hodgins, 1999; O’Brien et al., 2002].

Displacements u translate into an elastic strain ǫ. We calculate this 3 × 3
matrix using the Green-Saint-Venant strain tensor:

ǫi =
1
2
(∇ui +∇uT

i +∇ui∇uT
i ), (4.1)

where ∇ui is the gradient of the displacement from the reference neighborhood
which is computed using the SPH method:

∇ui =
∑

j

v̄juT
ji∇W (r′ij , h), (4.2)

where the displacement difference vector uji = xj − xi + r′ij .
From this strain ǫ the stress σ can be computed using Hooke’s law, σ = Cǫ.

For isotropic materials C only depends on Young’s modulus E and Poisson’s
ratio υ. The stress can then be computed as:

σi =
E

1 + υ
(ǫ′i +

υ

1− 2υ
Tr(ǫi)I), (4.3)

where Tr( · ) is the trace of a matrix, I is the identity matrix and ǫ′i is the strain
deviation:

ǫ′i = ǫi −
Tr(ǫi)

3
I. (4.4)
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Chapter 4 Elastic Animation

To determine the elastic force felastic
i of particle i, the gradient of the strain

energy Ui = 1/2(ǫ ·σ) of the particle with respect to the displacement needs to
be computed:

felastic
ji = −∇uj

Ui = −2v̄i(I +∇uT
i )σidij . (4.5)

The derivative of Equation 4.2 with respect to the displacement uj is also com-
puted using SPH:

j 6= i→ dij = v̄j∇W (r′ij , h). (4.6)

Plasticity can easily be incorporated by testing the strain against the mate-
rial’s yield conditions and account for the plastic strain [O’Brien et al., 2002].
Material fractures can simply be simulated by removing distance vectors be-
tween particles in the reference neighborhoods once the material can yield no
more.

4.3 Rigid Bodies

The particle simulations of highly stiff materials discussed in the previous sec-
tion require small time steps to be stable. Indeed, the smallest variation from
the reference shape then generates large stresses between particles which result
in large elastic forces. In turn these elastic forces will try to correct the defor-
mations, but a large time step will overshoot and make the deformation even
bigger.

A common simplification for these highly stiff materials is to simulate the
particular object as a rigid body. A rigid body discards all deformations, meaning
the distance between any pair of particles in the rigid volume remains the same
during the simulation.

Force acting on the particles are accumulated to a total force frigid and torque
τ rigid on the body to enforce rigid body motion, i.e. a general translation and
rotation of the total particle volume [Baraff, 1997]:

frigid =
∑

i

fi, (4.7)

τ rigid =
∑

i

(xi − xcm)× fi, (4.8)

where fi is the sum of all forces applied to particle pi and xcm is the center of
mass of the body of particles.

The movement of the rigid body is then simulated in time by calculating the
linear and angular velocity of the body. The linear velocity is obtained similar
to Section 2.2. The angular velocity of a rigid body can be computed using the
inertia tensor I and the angular momentum L:

ω = I−1L, (4.9)
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where the angular momentum L is updated in every time step as

L← L + τ rigid∆t. (4.10)

In our work enforcing rigid motion is not only of importance to simulate
rigid bodies, but also to update the reference shape of deformable bodies (see
Section 4.2). Since the orientation of neighboring particles is not rotationally
invariant, the reference shape needs to be rotated similar to the rotation of the
deformable body.

This is achieved by storing the particle’s initial or reference position x′
i and

applying Equations 4.7 to 4.10 to the reference shape where xi is replaced by
x′

i.
This, of course, only accounts for a total rotation and neglects rotations of

subparts of the elastic body. Subdividing the elastic body in multiple parts, each
having its own reference shape, is not a real solution and only complicates the
matter. Recently however, Becker et al. [2009a] provided a solution to account
for rotations in elastic SPH simulations.

4.4 Thin Shells and Cloth

Solenthaler et al. [2007] use SPH for its ability to handle coarsely and coplanar
sampled particles and use it for melting and solidification simulations. This
motivated us to apply their elastic model to thin shells and extend the model
to SPH cloth simulations. Simulating thin elastic shells is straightforward by
applying the elasticity model from Section 4.2 to a single layer particle sampling.
However, to prevent fluids from leaking through a thin shell extra precautions
are needed. We describe our measurements in Section 4.4.1 and our extension
to cloth simulation in Section 4.4.2.

4.4.1 Thin Boundary

Coupling thin shells and fluids provides a challenge in avoiding leaking behavior.
Only relying on fluid pressure and elastic forces as in [Solenthaler et al., 2007]
is not enough to overcome leaks as high fluid pressures or low Young’s moduli
may lead to higher spacings between particles of the thin shell.

Therefore, we need to add an additional collision response scheme. Müller et al.
[2005] simulated immiscible fluids using an interface tension force similar to the
surface tension force discussed in Section 3.2. This force is always pointed away
from particles of another type of object. Applying this scheme to a thin shell of
particles however may not always produce a valid force vector.

We add an explicit collision handling scheme based on the boundary parti-
cle approach [Monaghan, 2005; Becker and Teschner, 2007]. A boundary force
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-2 -1,5 -1 -0,5 0 0,5 1 1,5 2

2,5

5

7,5

Figure 4.2: A plot of the boundary kernel Γ which increases repulsion forces
when particles approach. The kernel is plotted as a radially symmetric function
(i.e. r = |r|).

f boundary is applied between neighboring particles of which one is elastic and the
other one can be anything else (fluid, elastic, ...).

f boundary
ij = kb mj

mi + mj
Γ(rij, h)

xi − xj

|xi − xj |
, (4.11)

where the kernel function Γ is defined as

Γ(rij, h) =
1
|rij|





2
3 0 < q < 2

3

(2q − 3
2q2) 2

3 ≤ q < 1
1
2 (2− q)2 1 ≤ q < 2
0 otherwise

(4.12)

with q = |rij|
R and R the particle radius (Figure 4.2). Using the scalar kb this

boundary force can be controlled independently from the pressure force. Thus
the reaction resulting from the boundary force can be made much stricter hereby
avoiding leaks.

In our experience, combining such a boundary force together with an explicit
collision handling scheme results in a better fluid-shell interaction. This means
the influence range of a particle is divided into two regions (see Figure 4.3).
When the distance between two particles is smaller than twice their radius,
rij < 2R, their positions xj are displaced along r̄ij and their velocities vj are
corrected:

x′
j = xi + (Ri + Rj)r̄ij , (4.13)

v′
j = vj − (vj · r̄ij)r̄ij . (4.14)
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rij

v

h

Explicit collision

Boundary force
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Figure 4.3: Explicit collision handling between fluid particles (thin) and shell
particles (thick) is combined with a boundary force f . When the particles ap-
proach too close (within the inner white region), they are displaced and their
velocities are corrected. Otherwise (gray region), the boundary force is applied.

Otherwise the boundary force f boundary is applied between the two particles.
In this case the scaling factor kb can be chosen lower than without the explicit
collision handling. Fluid particles approaching shell particles are now first slowed
down. Only when there’s enough pressure they will actually collide with the shell
particles. We notice fluid particles are now able to slide of thin shells instead of
being repelled.

Similar to [Müller et al., 2004b], boundary friction can be added using the
same artificial viscosity term as for fluid-fluid interactions. Alternatively, when
using explicit collision handling, the corrected velocity can be scaled down.

4.4.2 Cloth

The simulation algorithm for thin elastic shells cannot be used to simulate cloth
behavior. This is illustrated in Figure 4.4. Two deformable sheets are shown,
horizontally floating above a chrome sphere. The left sheet is simulated as a
thin elastic shell, whereas the right sheet is simulated as a cloth. The sheets
are dropped over the spheres. Notice how the elastic sheet deforms only a little
and bounces on the sphere, whereas the cloth folds around the sphere. In other
words, the elastic shell tries to maintain its planar shape by prohibiting bending,
while the cloth allows for bends and folds. It is this kind of flexibility of cloth
behavior we want to capture and add to the elastic framework.

We extend the elastic model of Solenthaler et al. [2007] to allow the simulation
of cloth. As detailed in Section 4.2 they compute elastic forces for each particle
using a local reference neighborhood in which each particle stores distance vec-
tors to its neighboring particles in rest (see Figure 4.1). The extension for cloth
simulation is achieved by discarding the orientation of particles in the reference
neighborhood and using only the distance between neighboring particles. Doing
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Figure 4.4: Comparison of the behavior of a thin elastic sheet and a piece of
cloth. The elastic sheet tries to maintain its planar shape by prohibiting bending,
while the cloth allows for bends and folds.

so appropriately allows for bending, but prohibits material stretching.
Though the elastic model tries to keep a minimum distance between particles

in the reference neighborhood, self-collisions can still occur when pieces of cloth
are folded and overlap. We avoid this by applying a simple penalty force propor-
tional to the overlap between particles, hereby pushing the particles away from
each other.

Particles attached to a fixed point such as the cloth in Figure 4.7 or elastic
particles colliding with fluid can experience a lot of stress. Applying the artifi-
cial viscosity term (Equation 3.11) to the cloth particles basically smoothes the
particle velocity field and is thus used to damp and stabilize the cloth. Because
of the simplified reference neighborhood (neighbor orientations are discarded),
cloth particles are less constrained than elastic shell particles and thus often
need a higher damping.

4.5 Results & Discussion

Figure 4.5 shows a thin elastic bowl filled with water. The bowl is dropped on the
floor which causes it to deform on impact. During the impact the water further
deforms the bowl, however, without any leaks. Water only splashes through
the side opening out of the bowl. The bowl consist out of 5,300 particles and
contains 48,000 water particles.

A piece of cloth is dropped over 5 floating spheres in Figure 4.6. Then, water
is poured on the cloth which wraps around the raising water mass until it slips
through the spheres above. Also notice how the cloth can float on the water
surface at the end of the animation. This is an automatic result of the pressure
density forces between particles. The cloth is simulated using 15,000 particles.
For the water simulation about 100,000 particles were used.

In Figure 4.7 a jet of water interacts with a piece of cloth. Notice how the
force of the water jet pushes the cloth away, after which the cloth sweeps back
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Figure 4.5: An elastic bowl filled with water is dropped to the floor. The bowl
deforms on impact but water only splashes out of the bowl through the side
opening.

again and influences the water flow. Also the back of the cloth is visualized to
show no fluid passes through. The water is simulated using 325,000 particles
while the cloth simulation only uses 15,000 particles.

Discussion

Using SPH to simulate just cloth may not be the best option. For instance
the particle sampling resolution is linked to the thickness of the cloth. Mesh-
based approaches are typically preferred because the simulation nodes have a
fixed connectivity and the resolution can be chosen more freely. However in
combination with a fluid simulation, where cloth and fluid should interact, we
profit from the all particle sampling making interactions much easier than mesh
based approaches.

While the boundary collision scheme provides a good coupling between fluid
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Figure 4.6: A piece of cloth is dropped over floating spheres. Water is then
poured on the cloth which slips through the sphere as the water mass increases.

and thin shell, there still are circumstances under which water leaks can occur.
For large shell deformations fluid particles can still leak between the stretched
elastic particles. We believe our method is sufficient for most animations, as
the deforming bowl example (Figure 4.5) illustrates. However, in more extreme
situations such as filling a balloon with water, a resampling of the elastic shell
is needed to fill the gaps and solve the leaks.

One of the benefits of the SPH density based pressure model is the automatic
buoyancy effect when objects interact with fluids. This can be seen in Figure 4.6
as the cloth keeps floating on top of the water at the end of the animation. In
Chapter 6 we will introduce a novel porous flow model which can influence this
behavior by letting the object absorb water.
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4.6 Conclusion

This chapter clearly illustrates the use and benefits of SPH in simulations of de-
formable materials and the combination with fluids. We showed how the elastic
framework of Solenthaler et al. [2007] can be extended to allow thin shell simula-
tions in an SPH fluid environment using explicit collision handling. Furthermore,
by altering their local reference shape definition, we are able to perform SPH
cloth simulations. Our animations show fluid-shell interactions without leaks.

It should be clear there exists quite an amount of SPH solutions of physics
models for the simulation of various types of objects and flows. In the next
chapter we will add the SPH simulation of granular materials such as sand to
this list and continue the trend towards a unified SPH framework for fluid, solid
and granular materials.
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Figure 4.7: A jet of water is aimed at a piece of cloth. Water slides of the cloth
which sweeps back and forth by the interplay with the jet. As can be seen in
the bottom row no water passes through the cloth.
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Chapter 5

Sand Animation

Based on [Lenaerts and Dutré, 2009b], this chapter expands our series of ma-
terials that can be simulated using particles and more particular using SPH.
We discuss our adaptation of an existing Eulerian sand simulation method and
discuss possible solutions to the challenge of rendering sand. In the next chapter
we will then show how this new SPH sand simulator can incorporate interactions
with fluids.

5.1 Introduction

Sand simulations in computer graphics started with dynamic terrain generation
algorithms. Soil and sand terrains can be simplified and simulated as height-
fields [Li and Moshell, 1993; Chanclou et al., 1996]. [Sumner et al., 1999] ex-
tended the heigh-field approach to model footprints and other tracks. Also, inter-
active manipulations are possible [Onoue and Nishita, 2003; Pla-Castells et al.,
2008]. Sand animations based on particles were introduced by Miller and Pearce
[1989]. Bell et al. [2005] simulated granular materials using a particle-particle
collision model. Although they can handle large amounts of colliding bodies effi-
ciently, the simulation resolution is directly linked to the grain size, which makes
large or detailed sand simulations impractical within short time frames. In con-
trast, Zhu and Bridson [2005] take a continuum approach by simulating sand as
a fluid, thereby decoupling the resolution of the simulation from the grain size.
Wojtan et al. [2007] simulated sand erosion. Falappi and Gallati [2007] coupled
granular and fluid phases using SPH. A GPU implementation of granular mate-
rials was made possible by Rungjiratananon et al. [2008]. Although they reach
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interactive simulations by a GPU implementation, they simulate one sand grain
by one particle and therefore are subject to the same scalability limitations as the
model of Bell et al.. Alduán et al. [2009] advect high resolution particles using
a low resolution simulation based on the method of Bell et al. using separated
internal and external forces computations.

For a more detailed discussion of simulation models for granular materials
both in computer graphics as well as in the physics community, we refer to the
work of Bell et al. [2005] and Zhu and Bridson [2005].

The main contribution in this chapter is an SPH framework for granular ma-
terials. We show how sand volumes can be simulated using the sand model
of Zhu and Bridson [2005] in a particle framework. As mentioned before, they
employ a continuum approach which integrates much better in our simulation
framework for fluids and elastic bodies than the model of Bell et al. [2005].
Looking ahead to our porous flow simulation algorithm, this method is also best
suited to incorporate the secondary effects of fluid absorption. Next to simu-
lating sand flow, we also tackle the problem of rendering sand which is both a
speed and memory challenge.

Overview

In Section 5.2 we sketch the method of Zhu and Bridson and explain how this
Eulerian based solver can be transfered to a Lagrangian setting. Our experi-
ments and solution to the challenge of rendering sand are detailed in Section 5.3.
Finally we discuss and conclude our work on sand in Sections 5.4 and 5.5.

5.2 Granular Materials

In our Lagrangian setting the sand volume is sampled with particles similar to a
sampling of fluid volumes. Compared to earlier particle-based sand models,
this continuum approach enables more efficient simulations of sand in bulk.
Zhu and Bridson [2005] propose a simplified stress model to apply friction in
the sand volume. A flowchart of the particle-based algorithm is provided in
Figure 5.1.

First they assume the pressure inside a sand volume is similar to the pressure
required to make the velocity field incompressible. This is certainly false, yet the
approximation is good enough for most cases. We use our fluid SPH framework
to solve for pressure gradients and make the intermediate velocity field nearly
incompressible using Tait’s pressure equation (Chapter 3).

Then they decompose the sand domain in regions moving rigidly and regions
of shearing flow. To do this the frictional stress σf and the rigid stress σr

are computed for each particle using the gradient of displacement ∇u in each
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For each cluster

For each particle

Compute pressure 
gradient

Compute displacement 
gradient

Compute stress Mohr-Coulomb

Compute shearing force

Mark as rigid

Find rigid clusters
For each particle

Accumulate forces

For each particle

For each particle

Move rigidly

Shearing?

Rigid?

Apply forces 

For each shearing particle

Move

Figure 5.1: A flowchart of the particle-based sand simulation algorithm. Re-
gions of rigid motion and regions of shearing flow are identified using a simplified
stress model and updated differently.

particle. The frictional stress for particles in regions of shearing flow is given as:

σf = −µf
D√

1/3|D|F
, (5.1)

where µf is the friction coefficient. The strain rate tensor D = (∇u +∇uT )/2
is evaluated for each particle using SPH:

∇u =
∑

j

Vjvj∆t · ∇W (xj − xi, hj). (5.2)

Particles in regions moving rigidly can be found by testing the rigid stress σr:

σr = −ρDh2

∆t
(5.3)

against the Mohr-Coulomb condition, which determines material yielding
√

3σf < µfσr + c, (5.4)

where c is grain cohesion.
We then search for clusters of particles marked as rigid. Two rigid particles

belong to the same cluster when at least one path can be constructed between
those particles over neighboring particles within a support range h′ ≤ h (see
also Figure 5.2). Smaller support ranges h′ result in more rigid clusters which
can break apart more easily. Forces on cluster particles are accumulated to a
total force and torque and the particle cluster is then moved as a rigid body (see
Section 4.3).
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h

h' shearing flowrigid cluster

Figure 5.2: Two regions of sand flow identified by testing the Mohr-Coulomb
condition: Sand particles marked as rigid are clustered and moved as a whole,
the other sand particles are in a state of shearing flow and are moved separately.

The remaining particles are updated with the frictional stress by computing
the force out of σf similar to the elastic force felastic (Equation 4.5).

The net result in such a sand simulation is a volume of sand in which regions
stand or move rigidly and regions in which flow over the rigid regions until the
total sand volume comes to rest in which case the entire volume is simulated as
a rigid object.

5.3 Visualization

Once the simulation is complete the sand volume needs to be rendered. This
however is a challenging problem given the size of sand grains, which diameter
typically ranges between 0.05mm and 2mm. Since a major advantage of our
SPH sand simulation is the abstraction of sand grains, we can’t just render
the simulation particles as they are typically much bigger than the actual sand
grains. So we need a way to give the viewer the impression of millions of sand
grains while still simulating only a few 10, 000 particles.

Extracting a surface mesh using Marching Cubes (MC) as for fluids is one so-
lution [Zhu and Bridson, 2005], however a procedural sand texture requires tex-
ture coordinates consistent over time which is not trivial. Bargteil et al. [2006],
Kwatra et al. [2007] and Mihalef et al. [2007] propose methods for texturing flu-
ids and visualizing the flow. The later is important for sand volumes since they
often show sand sliding down. In production environment sand shaders and
actually simulated high resolution grains at the surface are combined, deliver-
ing more realistic results [Ammann et al., 2007], but are computationally quite
expensive.

In this work we have experimented with actually visualizing the millions of
sand grains on top of the low resolution simulation. We discuss our solutions in
the next sections.
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Compressible Poor advection

Figure 5.3: Advecting millions of sand grains along with the flow of a low res-
olution sand simulation inhibits some artifacts. Sand grains can be compressed
since the sand simulation is compressible. Sand grains near the edge of the color
field may suffer poor advection due to the weighting kernels.

5.3.1 Advecting Grains

An evident solution is to generate millions of sand grains in the sand volume
and advect them along the velocity field of the sand simulation. This velocity
field can be constructed from the particles using a color field (see Chapter 2).
The color field is evaluated by placing the simulation particles on a regular grid.
This can be done during the simulation or afterwards. However, while lookups in
this velocity field can be accelerated using a grid structure, processing millions
of grains for each time step remains a very expensive operation. Therefore, we
suggest reconstructing this velocity field in a post-process.

Apart from the speed there are a few more issues with advecting sand grains.
First, the velocity field is not divergence free because the simulation is based on
a compressible fluid solver (see Chapter 3.2). While this is hardly noticeable in
fluid simulations, visualizing the volume using minuscule grains clearly results
in areas of higher density (Figure 5.3(a)).

Secondly, sand grains at the edge of the velocity field may suffer from smaller
advection due to the kernel drop-off in the color field (see Figure 2.4(a)). This
translates to grains ’hanging’ in the air.

In very recent work, Alduán et al. [2009] address this problem. They too
sample high resolution particles on a low resolution simulation, but separate
internal and external forces in the eventual advection step. Only the internal
forces between granular particles are being interpolated, whereas external forces
such as collisions with boundaries or objects are explicitly computed for the
high resolution particles. In addition, the high resolution particles are only
advected with the velocity field when in the neighborhood of more than one low
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Figure 5.4: Rendering pseudo-random sand grains (left) for each simulation par-
ticle (right) conveys the illusion of sand.

resolution particle, hereby avoiding our issues at the surface of the sand volume
and cluttering. Otherwise, they are fully simulated.

5.3.2 Pseudo-random Grains per Particle

To overcome the difficulties of advecting grains we employ a naive method for
visualizing the simulation particles by rendering pseudo-random high resolution
grains for each of the simulation particles (Figure 5.4). These high resolution
grains are fixed per simulation particle to avoid flickering. This conveys the
illusion of sand grains for bodies of sand and even visualizes sand flow, which
would not be the case when visualizing a surface mesh.

However, the illusion fails when particles drift apart or because of a regular
sampling pattern. This is noticeable in the jet in Figure 5.4. On the other hand,
one of the advantages of this visualization method is that information from the
simulation particles can directly be used on the sand grains. For instance, the
associated sand grains of particles at the surface (which can easily be tracked)
can be simulated in a post-process similar to [Ammann et al., 2007].

5.4 Discussion

Figure 5.5 shows a comparison between two simulations made with different
cohesion terms c. Remember, the cohesion term in the Mohr-Coulomb condition
(Equation 5.4) helps classifying particles into regions of shearing flow or regions
moving rigidly. Sand is poured on the floor and piles up. The top row shows
a sand simulation made with a low cohesion term, whereas the simulation in
the bottom row was made with a high cohesion term. The sand pile with the
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Figure 5.5: A comparison of different cohesion terms. The top row was simu-
lated using a low cohesion term whereas the bottom row had a higher cohesion
term, classifying more regions as rigid and making the sand pile rise higher.

high cohesion term is noticeably higher because more particles were classified as
being rigid. This comparison illustrates the ease of use of the sand parameters,
giving the animator intuitive controls to achieve the desired sand animation.

The model of Zhu and Bridson [2005] approximates the pressure in the sand
by the fluid pressure used to get an incompressible velocity field for the sand
volume. In some cases (e.g., hour glass simulations) this yields inaccurate results
as will our method since it is based on the same principles. Our approach uses the
SPH fluid method, which cannot guarantee incompressibility, and thus inherits
the same compressibility issues from SPH. However, by using Tait’s equation
[Becker and Teschner, 2007] for the pressure computation, we obtain a weakly
compressible volume (< 1%), limiting the error.

In the proposed framework, one sand particle represents a volume of sand
grains. Sand particles can easily drift or splash apart when interacting with
fluid or objects. In that case, the sand particle is a poor approximation since
the grains would probably spread. Using an adaptive particle sampling approach
such as in [Desbrun and Cani, 1999] or [Adams et al., 2007] would result in a bet-
ter sampling of the sand volume. Alternatively, as we discussed in Section 5.3.1
Alduán et al. [2009] address this problem too by advecting high resolution par-
ticles using a low resolution simulation using separated internal and external
forces computations.

Rendering millions of sand grains appears to be a non-trivial task for existing
rendering engines. We’ve experimented with POV-Ray [pov, 2009], Blender
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[ble, 2009] and Autodesk Maya [aut, 2009] of which only the first was capable
of rendering millions of parametric spheres out of the box within reasonable
time. Rendering only pseudo-random sand grains at the surface and simulation
particles inside the volume can decrease memory consumption and rendering
times.

5.5 Conclusion

We have shown how the fluid-sand model of Zhu and Bridson [2005] can be
simulated in a unified SPH framework. Simulating sand as continuous volumes
enables animations consisting of larger amounts of sand compared to previous
approaches.

We’ve also studied the visualization of sand and conclude rendering pseudo-
random sand grains for each simulation particle offers a good balance between
speed and conveying the illusion of sand. Furthermore it offers a nice flexibility
which provides ways for post-process refinements.
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Chapter 6

Porous Flow

During the previous chapters we discussed how the models for fluids (Chap-
ter 3), rigid and deformable bodies (Chapter 4) can be simulated using SPH and
freely combined to animate interactions between fluids and solid materials. In
this Chapter we show how to extend this framework to handle the interaction
of fluid inside of objects by simulating porous flow. We not only show how fluid
can be absorbed and flow inside a porous material, but also how the absorbed
fluid affects the objects.

The work presented in this chapter was the result of a collaboration with Bart
Adams (Stanford University) and Philip Dutré (Katholieke Universiteit Leuven)
[Lenaerts et al., 2008; Lenaerts and Dutré, 2009b].

6.1 Introduction

Although great progress has been made in fluid-solid animations (see Chapter 4),
the focus has been mostly on the coupling between fluids and impenetrable solid
objects or shells. Yet not all objects are made out of impenetrable solid material;
most materials are porous when viewed at the appropriate scale. These materials
absorb and diffuse fluid through their body upon interaction, which affects the
physical properties of the deformable body. For example, a soaked spongy ball
thrown at a wall reacts differently as opposed to a dry one, or wet cloths stick
to surfaces due to surface tension forces of the present fluid. Granular materials
such as soil or sand can also be considered as porous materials, which means
fluid can percolate into the empty space between grains, affecting the physical
behavior of the resulting mixture. For example, dry soil can turn into mud when
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water is added, yet with the right amount of water sand castles become rigid
structures that are easily destroyed by a breaking wave. These are important
phenomena that can be witnessed for example on rainy days or at the beach.

To include these effects in computer graphics, not only the absorption and
emission processes need to be modeled, but also the fluid diffusion within the
porous material, as well as the changing material properties of the deformable
objects and granular volumes.

In this work we present a novel particle method based on Smoothed Particle
Hydrodynamics (SPH) to simulate fluid-absorbent deformable objects and their
changing behavior. We extend our unified framework to simulate the wetting of
objects; not only at the surface, but also throughout the volume of the object.
Secondary effects such as the weakening and sinking of fluid absorbent objects
follow immediately from the changing physical particle properties.

The main contribution of our method is the treatment of the pores at a macro-
scopic scale. Previous SPH methods modeling the porous body at the pore scale
suffer from long simulation times and memory usage, making them not very
practical and too detailed for computer graphics animations. In contrast, we
reuse the particle representation of the deformable objects and add additional
properties to model the diffusion process within porous materials. Collocating
the elastic and porous material properties facilitates modeling of changing mate-
rial behavior and results in a lightweight particle representation that can easily
be incorporated in existing animation algorithms.

Overview

An overview on relevant work on porous flow is given in Section 6.2. Section 6.3
discusses how porous materials can be modeled in a particle framework. Subse-
quently simulating water flow inside a porous material is presented in Section 6.4.
Section 6.5 then discusses water absorption and emission as a similar process as
the flow simulation. The effects of absorbed water on a porous body are treated
in Section 6.6. Section 6.7 deals with the visualization of wet surfaces and vol-
umes. Finally our results are presented and analyzed in Sections 6.8 and 6.9.
We conclude our work on porous flow in Section 6.10.

6.2 Related Work

The study of fluid flow through porous media is scattered throughout many fields
of science. It is of importance in solid state physics, material science, geology,
hydrology and petroleum engineering. A good overview of the physics of flow
through porous media is given by Scheidegger [1957]. Bear [1972] was the first
to present the continuum approach in modeling flow and transport phenomena.
A more recent presentation on the subject was published by Hilfer [1996].

48



6.3 Modeling Porous Materials

Over the years several simulation methods have been used to solve the laws
governing porous flow. Lattice-Boltzmann methods [Higuera and Jiménez, 1989;
Higuera et al., 1989], in which fluid particles are traced on a regular lattice, have
been successfully applied to fluid flow in porous media [Ferréol and Rothman,
1995; Martys and Chen, 1996; Manwart et al., 2002]. Generally, a pore structure
is modeled as solid boundary conditions on the lattice.

The use of SPH for modeling flow in porous media at a pore scale was concur-
rently investigated for predictive simulations by different authors. Sawley et al.
[1999] presented an SPH framework in which porous media are modeled by fixed
particles in the fluid domain. In a series of papers Zhu, Fox and Morris extended
SPH to allow incompressible porous flow [Morris et al., 1997; Zhu et al., 1999]
and describe diffusion in spatially periodic porous media [Zhu and Fox, 2001].
A Riemann-SPH method was introduced by Berry et al. [2004] to simulate con-
taminant transport and deposition in porous media. While these approaches
result in accurate solutions, they are limited by the computational costs for
practical problems as Zhu et al. [1999] concluded. The problem was alleviated
by Morris et al. [1999] as they showed that SPH can be parallelized to simulate
flow through porous media. However, the porous flow simulations are performed
on the pore-scale and are, as such, still prohibitively expensive for use in a com-
puter graphics context.

Besides Chu and Tai [2005] who showed how ink can be dispersed in absorbent
paper using a lattice-Boltzmann approach on graphics hardware, porous flow has
not been simulated before in computer graphics.

6.3 Modeling Porous Materials

A porous medium can be modeled at different scales. On the pore-scale, each
of the individual pores or cavities could be carved out of the solid phase. In
this work, we opt for an efficient representation at a macroscopic scale. We
remodel rigid or elastic particles as porous particles and let them represent a
small porous volume, capable of holding an amount of fluid (Figure 6.1). This
unified representation allows us to use the same particle resolution as for regular
solid-fluid simulations. Moreover, it allows modeling changing material behavior
when fluid is absorbed by a particle.

A porous particle is completely defined by its porosity and permeability. The
porosity φi denotes the volume fraction of the interconnected void space at the
particle, i.e., φiVi denotes the void particle volume. Hence, a particle pi with
porosity φi can hold an absorbed fluid mass mpi ≤ ρfluidφiVi which defines the
particle’s saturation Si:

Si =
mpi

ρfluidφiVi
. (6.1)

Note that mpi denotes the fluid mass in the porous particle, while mi denotes
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microscopic
pores

macroscopic
representation

pi

φi, Si, Ki

porous material porous particle

Figure 6.1: Porous materials are represented at a macroscopic scale. Pores or
cavities of a certain region in the volume are not modeled explicitly. Instead,
the region is represented at a coarser level by the use of porous particles (right),
which have porosity and permeability parameters that characterize the surround-
ing material.

the particle’s own unsaturated mass.
The permeability K of a porous medium characterizes its ability to transmit

a certain fluid. K is a second-order symmetric tensor, which may have non-zero
off-diagonal elements if the porous medium is anisotropic. It reflects the actual
internal distribution of pores for a certain region in the material. In our work,
we focus on isotropic porous materials, hereby reducing the permeability tensor
K = KI to a scalar. We assign a permeability Ki to each porous particle pi and
are therefore able to model both homogeneous and heterogeneous porous media.

6.4 Simulating Porous Flow

For small-scale fluid dynamics, surface tension (or interfacial tension) is of great
importance. At the pore-scale, the entrance of fluid into a pore is facilitated by
the surface tension because of a pressure differential between the entering fluid
phase and the displaced phase inside the porous medium, which can be air or
another fluid. This pressure, called the capillary pressure, makes fluid diffuse
to neighboring, less saturated pores. These forces also keep the fluid trapped
inside the medium. Since we have no microstructure of the pores, we model the
capillary forces acting on the fluid represented in a porous particle as gradients
of capillary potentials [Nitao and Bear, 1996; Hilfer, 2006], which we compute
using SPH:

∇P c
i =

∑

j

VjP
c
j∇W (xj − xi, hj), (6.2)
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where the capillary potential P c is defined as a pressure function of the saturation
S:

P c
i = kc(1− Si)α, (6.3)

with constants kc and 0 < α < 1 controlling the strength of the potential. The
capillary force of the pore space of a porous particle drops as its saturation
increases.

Another important pressure difference can arise when deformations of a porous
elastic body change the volume of the pore space. These porosity changes may
exert a pressure on the present fluid, causing it to flow out of the squeezed
pores. This leads to a variable porosity φi depending on the local density of the
medium:

φi = φ0
ρs
0

ρs
i

, (6.4)

where φ0 is the porosity in rest. We compute the pore pressure P p
i similar to

the equation of state as in Becker and Teschner [2007]:

P p
i = kpSi

((ρs
i

ρs
0

)γ

− 1
)
. (6.5)

The saturation level Si is added as a factor, motivated by our macroscopic
approach: Fluid may flow inside the volume of one porous particle as long as it
is not fully saturated.

These pressure differences give rise to the Darcy flux [Darcy, 1856], which gov-
erns the flow of an incompressible, single-phase fluid through a porous medium.
It can be derived from the more general Navier-Stokes equations and relates a
pressure gradient ∇P on a fluid with viscosity µ and completely filling a porous
medium with permeability K to a flux. This Darcy flux is related to the pore
velocity vp by dividing by the porosity φ:

vpi = − Ki

φiµ
(∇P p

i −∇P c
i − ρg). (6.6)

This pore velocity field defines an anisotropic diffusion inside the medium. In
contrast to the fluid particles outside of the porous medium, we model the fluid
flow inside the medium in a Eulerian way using a diffusion process. Fluid mass
is diffusing from one porous particle to the next, rather than tracing fluid par-
ticles through the medium. The SPH approximation to the diffusion equation
[Müller et al., 2005] for the evolution of the absorbed fluid mass mp is:

dmpi

dt
=
∑

j

dijVjmpj∇2W (xj − xi, hj), (6.7)

in which we define the diffusion coefficients dij between two particles propor-
tional to the direction and length of the pore velocity:

dij = vpj ·
xj − xi

‖xj − xi‖
Sβ

j . (6.8)
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Figure 6.2: Three different cases for fluid transportation in the presence of
porous materials. A: Within the porous object fluid mass is diffused at a
macroscale between the porous particles. B: Fluid particles near the porous
material are treated as porous particles and mass is taken away from them if
fluid is absorbed by the porous material. C: When the porous material emits
fluid, mass is added to neighboring fluid particles, which are again treated as
porous particles. If, after the diffusion process, more fluid remains to be emitted,
new fluid particles will be created in the neighborhood of the porous particle.

Similar to [Bear, 1972; Cuesta et al., 1999; Hilfer, 2006], we make the diffusion
dependent on the saturation Si of a porous particle. The user defined β > 0 is
a parameter to control this flow. It can be interpreted as internal flow, where
pores inside the particle volume are filled before flowing to neighboring particles.

Finally, the fluid mass is integrated in time using an explicit Euler integration
step:

mpi ← mpi + ∆t
dmpi

dt
. (6.9)

Due to the Eulerian nature of the diffusion process, mass conservation is not
automatically guaranteed and the total diffused fluid mass must be explicitly
controlled. We do this by explicitly checking the diffusing fluid mass against
the free and occupied volumes, (1 − Si)φiVi and SiφiVi respectively, inside the
porous particles.

6.5 Porous Medium-Fluid Coupling

At the contact surface between a porous material and the surrounding fluid,
porous particles interact with fluid particles. The surrounding fluid is absorbed
using particle deletion and absorbed fluid can be emitted back into the sur-
rounding fluid by dynamic particle creation. We now discuss these absorption
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and emission processes.

6.5.1 Absorption

Fluid particles near the surface of a porous body may be absorbed due to cap-
illary forces. We use the same diffusion process as described in the previous
section by treating the fluid particles at the surface as saturated porous parti-
cles with a porosity φi = 100% and saturation Si = 1 in Equations 6.2 to 6.9.
These fluid particles are included in the diffusion process and are deleted as soon
as all their mass is diffused in the absorbing material (Figure 6.2 B).

The gradual absorption of the fluid particle mass avoids discontinuities that
would arise if we would absorb the fluid particles at once and decouples the reso-
lution of the fluid from the resolution of the porous body. However, it introduces
variable sized fluid particles in the fluid simulation framework. As discussed in
Chapter 3, we employ the shooting-gathering approach of Desbrun and Cani
[1999] to obtain symmetric forces between particles with different smoothing
lengths. A variable time step based on the Courant condition for the smallest
hi stabilizes the simulation. A threshold for the particle volume, typically down
to 1% of the original size, is enforced to guarantee a minimum time step.

6.5.2 Emission

When the pore velocity field vp pushes the fluid outside the medium, fluid
mass has to be transferred from the porous material to the surrounding fluid
(Figure 6.2 C). Similarly to the absorption mechanism, we treat fluid particles
at the interface as unsaturated porous particles (Si = 0) and let absorbed fluid
mass diffuse to the fluid particles as described in Section 6.4. These fluid particles
may grow in volume until they reach the normal size of a fluid particle.

If no fluid particles surround the porous material or if additional fluid mass
remains to be emitted, new fluid particles are created as follows: The pore ve-
locity field vp defines the positions for these new fluid particles for the current
time step. To avoid large pressure forces between neighboring fluid particles,
we follow the approach of Adams et al. [2007] to maximize the distance to ex-
isting particles. If there is a particle too close (within a threshold distance), we
look for a new position by random sampling around this target position within
a sphere with half the particle radius. Ensuring this minimal particle distance
results in a more stable particle creation and emission process. Moreover, new
fluid particles are usually relatively small at creation and will push neighboring
particles aside as they expand due to diffusion in the next time steps.

These absorption and emission processes are illustrated by the 2D simulation
in Figure 6.3 where the simulation particles are visualized. A porous S-shape
is dropped into a tank of water. Water particles are color-coded depending on
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Figure 6.3: A particle visualization of the absorption and emission processes
during the simulation of a porous S-shape dropped into a tank of water. Water
particles are color-coded depending on their mass; the original blue particles
turn to red as they loose mass during the absorption process. Other smaller
particles turn back to blue as they grow in size due to the emission process.

their mass; the original blue particles turn to red and shrink in size as they loose
mass during the absorption process. Notice how some small particles turn back
to blue as they grow in size due to the emission process. Since plenty smaller
particles are available at the interface no new particles need to be emitted in the
emission process, keeping a steady particle count.

6.6 Modeling Changing Material Properties

Fluid absorbed by a porous object affects its material parameters and hence its
behavior. Particles gain weight, implying the solid mass mi and absorbed fluid
mass mpi of a porous particle should be used in all computations. The density
ρi of a porous particle is called the bulk density. The bulk rest density becomes:

ρ0i = ρ0 + Siφiρ
fluid
0 , (6.10)

to account for the saturated pores in the equation of state. The net result for a
soaked body is a higher mass and density and thus changed physical behavior
as compared to the dry material.

6.6.1 Elastic Bodies

When simulating elastic bodies, the fluid pressure also reduces the stress σi in
the body:

σeff
i = σi − ηP p∗

i I. (6.11)

Equation 6.11 is called the effective stress and determines material weakening
and volume gain. The P p∗

i = kpSi represents the pore pressure of the present
fluid. Resulting from our experience we added a scaling factor η to the equation
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to control the balance between porous flow (Equation 6.5) and the influence of
the pore pressure on the elastic body.

6.6.2 Granular Materials

A granular material can be considered as a porous material. The space between
individual grains of a granular volume is the actual pore space. Work has been
published on simulating granular materials and fluids separately (see Chapter 5),
but fully coupling the two volumes seems difficult. One challenge is that fluid
has to be able to flow through the open space in the granular volume, which
directly couples the fluid and sand resolution at which the simulation is per-
formed. Another difficulty is simulating of the resulting mixture, since the fluid
can alter the behavior of the granular material or vica versa.

By choosing a simulation algorithm that simulates on volumes of grains instead
of simulating the actual grains, we can use porous particles as volumes of grains.
Moreover, simulating sand as a fluid allows us to easily simulate a mixture of
granular material and fluid and transition from dry dirt to a mud stream for
example.

In a moist sand volume the surface tension of the fluid between the sand
grains strengthens the sand volume to form a more rigid structure. At this
point the sand volume has reached an ideal saturation level S′. We use the
saturation level to control the cohesion term c in the Mohr-Coulomb condition
(Equation 5.4). We linearly interpolate between a cohesion cdry for the dry
material and a cohesion cwet for the moist material, depending on the saturation
level (Figure 6.4):

c =
{

cdry(1− S
S′ ) + cwet S

S′ if S ≤ S′

cwet 1−S
1−S′ if S > S′ (6.12)

As more water is added to the mixture, sand grain spacing increases and the
mixture becomes more liquid. To simulate such a mixture we add a viscosity
term [Müller et al., 2003] to the velocity field of the sand and use the satura-
tion level S to scale the viscosity coefficient µ′ = µ(S − S′)/(1 − S′) of the
fluid-sand mixture. At the same time, we down-scale the friction coefficient
µ′

f = µf (1− S)/(1− S′) of the sand as the saturation increases.
The net result is a sand volume that can turn in to a rigid structure or a vis-
cous fluid volume and vice versa. The evolution of these parameters versus the
saturation is plotted in Figure 6.4.

6.7 Visualization

The appearance of objects changes when water or another fluid is absorbed. In
general, wet materials look darker compared to dry materials due to increased
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Figure 6.4: As fluid is absorbed, the saturation level S determines sand cohe-
sion c, sand friction µ′

f and viscosity µ′. Dry sand transitions to a rigid moist
structure to viscous mud.

light absorption [Twomey et al., 1986]. Although complex models for the ren-
dering of wet surfaces with full subsurface scattering are available [Jensen et al.,
1999], we use a simple and intuitive model for visualizing our results. We model
the absorption using a darkening factor δ (0 < δ < 1) for wet regions. If fdry

r is
the Bidirectional Reflectance Distribution Function (BRDF) of the completely
dry material, the BRDF of the wet material, fwet

r , is approximated at particle
pi by

fwet
ri = Siφi(δfdry

r ) + (1− Siφi)fdry
r , (6.13)

where δfdry
r is the completely wet material and Siφi is a measure for the wet-

ness. A continuous BRDF evaluation at the vertex positions x is obtained using
Equation 2.2:

fwet
r (x) =

∑

j

Vjf
wet
rj (xj)W (xj − x, hj). (6.14)

As detailed in Section 5.3 we visualize sand volumes by rendering pseudo-
random high resolution particles for each of the simulation particles. In the case
of wet sand and soil the appearance of the surface becomes much smoother.
Especially when transitioning to mud it is important to visualize a liquid-like
surface. Therefore, as the sand volume saturates we gradually fade in a sand
mesh to illustrate the wet look. This is achieved by using the saturation level
in the alpha component of the vertex colors. High resolution sand grains are
darkened by applying Equation 6.13 to the corresponding simulation particles,
the surface mesh is darkened using Equation 6.14 as before. Figure 6.5 shows
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Figure 6.5: A close-up of a rendering of wet sand. Three regions can be identi-
fied; (A) a dark surface mesh visualizes the wet sand, (B) multi-grain particles
are used to render the dry sand, (C) a blend of the surface mesh and multi-grain
particles illustrates the moist sand.

the result of such a rendering featuring dry, moist and wet sand. Sand surfaces
are extracted using the colorfield of Solenthaler et al. [2007] and the Marching
Cubes algorithm [Lorensen and Cline, 1987], as described in Section 2.4.1.

6.8 Results

In all animations we set the capillary strength kc to 15, 000Pa and α and β
respectively to 0.1 and 7. We use a value of 0.0Pa · s for the artificial viscosity
of water Monaghan [2005]; Becker and Teschner [2007]. Full animations can be
seen in the accompanying video. Not all simulations were computed on the same
hardware, we provide an overview of the timings and used hardware at the end
of the section.

Figure 6.6 shows a comparison of the porous flow parameters by pouring water
against a dry sponge, measuring 5cm×5cm×5cm. The green sponge has a 70%
porosity and a permeability of 1e−12m2. Notice how the percolated fluid affects
the volume and stiffness of the sponge. The pore pressure constant kp is set to
5e4Pa for the green sponge, whereas the red sponge has a kp value of 7.5e4Pa
and thus has a larger volume gain. The orange sponge’s permeability is 10 times
lower than the one of the green sponge causing the fluid to flow at a slower pace.
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The twice as high capillary pressure of the blue sponge causes the fluid to rise
up higher in the sponge volume. The sponges are simulated using 5,000 porous
particles, the water is simulated using 25,000 particles.

Figure 6.7 shows a tank filled with a heterogeneous porous material with
varying permeabilities. The porous medium’s dimensions measure 10cm ×10cm
×10cm. An S-shaped region in the porous medium has a permeability of 1−12m2,
whereas the other regions have a permeability of only 2e−15m2. The porosity
does not vary and amounts to 50%. As expected, the regions of higher perme-
ability saturate first as the fluid flows down the tank. Capillary forces pull the
fluid to the right in the lower part of the S-shape. 32,000 particles are used
to simulate the porous medium and the fluid on top is simulated by maximum
32,000 particles. The average computation time per frame is 2 minutes.

Figure 6.8 shows an animation of a wet cloth’s tendency to stick to surfaces
due to high surface tension forces caused by a small layer of fluid between the
surface and the cloth. We simulate this behavior by increasing the adhesion
forces between cloth particles and surfaces and make the friction proportional
to the saturation level of the porous particle. The result can be seen in the top
row of Figure 6.8 in which a 30cm×40cm wet velvet cloth is draped around a
sphere and starts dripping. The cloth is sampled by a single layer of 20,000
particles that have a uniform porosity of 70%, a permeability of 1e−12m2 and
are 80% saturated in the beginning of the animation. Notice how the cloth folds
and sticks around the sphere due to the present fluid, in contrast to a dry cloth
which can be seen in the accompanying video. The bottom row of Figure 6.8
shows frames from an animation where the same cloth is twisted to wring the
fluid out of the cloth. As the cloth folds and tightens, the porosity is reduced
and the water naturally flows out of the cloth. Approximately 80% of the fluid
in the porous particles is emitted at the cloth surface, hereby creating 25,000
fluid particles. The computation time per frame was on average 1.5 minutes for
both animations.

Figure 6.9 shows an animation in which water inside a porous Armadillo model
is squeezed out. The Armadillo is sampled with 30,000 porous particles of 70%
porosity and saturated for 95%. Capillary forces hold the fluid mass in the porous
volume unless the porous particles are deformed (e.g., around the fingers). As
the hand closes the volume of the Armadillo is reduced by 15% on average and
the resulting pore pressure pushes the fluid out. Notice how emitted fluid can
be absorbed again at a different point. While the hand squeezes the number
of particles increases to 20,000 and drops again to 10,000 when the hand stops
moving. The computation time was approximately 20 minutes per frame due
to a small simulation time step that was required to ensure adequate squeezing
behavior avoiding hand-Armadillo penetrations.

As presented in Section 6.6.1 the fluid pressure in the pores absorbs some of
the stress of the pore-elastic body. The resulting behavior of the effective stress
is illustrated in Figure 6.10. A dry Stanford Bunny consisting of 24,000 porous
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Figure 6.6: Animations showing the effects of the porous flow parameters by
pouring water against a dry cubic sponge. Higher pore pressures affect the
volume gain (red), a lower permeability slows the flow down (orange) and a low
capillary pressure does not pull the water as high (blue).
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Figure 6.7: Water flowing through a heterogeneous porous material. An S-
shaped region has a 500 times higher permeability, allowing the fluid to reach
the bottom more easily.

particles is dropped into a funnel. The material is strong enough to support
and hold the Bunny above the funnel. As we pour water in the funnel (60,000
particles), the Bunny absorbs the water and becomes weaker. Eventually the
material is no longer capable of supporting the increased weight causing the
Bunny to sag through the funnel into the reservoir below.

In Figure 6.11(a) we show a dry sand column collapsing as in [Zhu and Bridson,
2005]. Once the sand pile has come to rest we pour water onto the sand. Notice
how the water jet mixes with the sand and erodes a hole in the pile. The simula-
tion consists of 45,000 sand and 35,000 water particles and took approximately
50s per animation frame.

Figure 6.12 shows the same sand column, however now the sand is 40% satu-
rated. The surface tension of the present water keeps the column rigidly stand-
ing, which is simulated by increasing the cohesion term as in Equation 6.12.
A water column is released on the sand column. Notice how the water erodes
the lower half of the sand column and weakens the sand structure. Eventually
the sand column falls apart in the water. The container is 16cm×10cm×12cm.
The simulation consists of 45,000 sand and 75,000 water particles and ran at
approximately 78s per frame.

A rain shower is simulated in Figure 6.13. At first only a few drops fall from
the sky on the dry soil and can be absorbed rapidly. As more rain drops fall
down, the soil becomes saturated, cannot handle the excess water and turns into
a puddle of mud. The soil is simulated using 40, 000 particles, the rain consisted
of 50, 000 particles. The average computation time was 1 minute per frame.

In Figure 6.11(b) we show dry sand sliding on the Stanford Bunny. Then, we
start pouring water on the sliding sand which transforms into more rigid moist
sand. Notice how moist sand piles up at the head and right next to the Bunny.
In the end of the animation the excess water is also absorbed, weakening the
pile and making it collapse. We use the saturation level of the sand particles to
guide the stickiness [Clavet et al., 2005] between the surface of the Bunny and
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Figure 6.8: Wet cloth simulations. Top: A wet cloth is draped over a sphere.
Water flows down the cloth and forms jets at the tips. Bottom: Twisting a wet
cloth causes the fluid to flow out of the reduced pore space.

the sand. The Bunny statuette is 20cm×15cm×17cm. Approximately 70, 000
particles were used in total, requiring about 1 min of computation per frame.

Timings

Not all simulations were executed on the same hardware and computed using the
same software. Results from [Lenaerts et al., 2008] were generated on a single
processor computer with a 2.93 GHz CPU and 4 GB of memory. The results
featuring granular materials from [Lenaerts and Dutré, 2009b] were generated
by an updated and parallelized framework using OpenMP and ran on a quad-
core 2.66 GHz CPU and 4 GB of memory. Table 6.1 lists the details about the
simulations. Rendering times are not included in the timings.

6.9 Discussion

Our porous flow model is based on a macroscopic approach in which porous
particles represent a volume of solid mass and empty space. The most im-
portant advantage of using SPH to model the diffusion process is that we can
easily handle absorption and emission at the boundary between the fluid and
the deformable body. Porous particles and water particles are treated in a uni-
form manner which greatly simplifies the algorithm. This advantage will be lost
when resorting to a mesh-based method for the diffusion process. Modeling the
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Figure 6.9: A wet porous Armadillo model is squeezed in a hand. The pressure
on the pores pushes the fluid outwards.

Simulation Particles Step (s) Frame (s) CPU (GHz)
Heterogeneity 32,000 0.75 120 1x2.93
Wet Cloth 20,000 0.5 90 1x2.93
Twisting Cloth 20,000 0.5 90 1x2.93
Armadillo 50,000 2 1200 1x2.93
Funnel Bunny 84,000 3.5 300 1x2.93
Jet on Sand 80,000 0.23 50 4x2.66
Sand Column 120,000 1.22 78 4x2.66
Rain 90,000 0.54 60 4x2.66
Sand on Bunny 70,000 0.6 60 4x2.66

Table 6.1: An overview of timing statistics for the presented simulations. Av-
erage timings are given per time step and per animation frame.

internal diffusion process using mesh-based approaches should be easy, however,
handling the absorption and emission at the interfaces seems to be a non-trivial
problem.

In this particle representation fluid can flow from one particle to the next, but
flow inside one particle is lost in the representation. We address this by using
the saturation level as a scaling factor in Equation 6.8. This effectively stalls
flow in the porous particle volume and hereby achieves the desired wet flow front
instead of a very gradual diffusion. Using the equation of state for pore pressure
calculations holds the same compressibility issues as for SPH fluid simulations.
Therefore we cannot guarantee volume preservation of the fluid in a deformable
porous body, causing porous flow to start too late when squeezing a porous body
using a low pore pressure constant.

Next to the effective stress one could also adjust the elastic parameters to
model the behavioral changes in the wet material. While Young’s modulus
generally seems to decrease with increasing water saturation, the behavior of
Poisson’s ratio seems less clear. Since these adjustments are highly material
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Figure 6.10: A dry porous Stanford Bunny is dropped in a funnel. As water is
absorbed the porous material weakens and the Bunny sags through the funnel.

63



Chapter 6 Porous Flow

(a) Static Sand Mixing (b) Dynamic Sand Mixing

Figure 6.11: (a) Water is poured on a pile of dry sand. The water percolates
into the sand volume and erodes a hole in the pile. (b) Dry sand slides down on
a Stanford Bunny. At the same time water is poured on the sand. Moist sand
piles up rigidly while wet sand turns in to viscous mud.

Figure 6.12: A moist sand column stands rigidly until a column of water is re-
leased. The water percolates through the sand and erodes pieces of the structure.

Figure 6.13: A rain shower on dry soil. As the soil becomes saturated a layer of
water forms on top and the soil turns to mud.
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dependent, we propose to use only the effective stress, which should suffice in
most computer graphics applications.

The inclusion of porous flow through bodies requires an extra iteration step
over the particles and their neighbors to diffuse the absorbed fluid mass. The
capillary and pore pressure and their gradients can be computed in the same
steps as the density and density force field respectively [Müller et al., 2003].
However, to compute the pore-velocity field the pressure gradients must be
known. This extra iteration over the particles only marginally increases the
simulation time. The simulation in the top row of Figure 6.8 took about 9%
longer in simulation time for the porous cloth compared to the solid cloth (not
accounting for the created fluid particles).

In our experience, the shrinking fluid particles can be the main cause of a
slow down of the simulation time. Their smoothing length determines the time
step and hence the simulation time per frame. In a single simulation time step,
most of the computation time is spent on neighborhood queries (as also noted
in [Keiser et al., 2006]). We currently use a grid-based acceleration structure
similar to Müller et al. [2003] that works reasonably well. Even though our
algorithm introduces differently sized particles, most particles have a uniform
size and only a small fraction of particles (typically near the boundary of the
porous material) have smaller radii. Using a uniform grid, with grid size based on
the largest, most common, support radius therefore only incurs little overhead
for the smaller particles. However, we plan to investigate whether a k-d tree
would further decrease the time spent on range queries.

For porous objects that only deform a little, the precomputed reference neigh-
borhood can be used to speed up internal diffusion. However, when simulating
cloth as in the wringing cloth demo (Figure 6.8), this would not yield the correct
results, as pieces of cloth overlap and touch and particle neighborhoods change
significantly during simulation. Here, dynamic neighborhood computation re-
sults in the correct diffusion behavior.

Also, the effective stress, which is the stress reduced by the absorbed fluid,
may cause fractures in the sand volume by increasing particle spacing. These
fractures may be influenced by the initial particle sampling, especially for low
resolution samplings. Since the porous flow algorithm requires the whole volume
to be sampled with porous particles, we cannot use adaptive sampling schemes
as in the framework of Pauly et al. [2005]. The techniques of [Desbrun and Cani,
1999; Adams et al., 2007] might be better suited.

In concurrent work, Rungjiratananon et al. [2008] presented an alternative
framework for animating the interaction between sand and water. They couple
an SPH fluid system to a Discrete Element Method (DEM) for the simulation of
granular materials. Fluid percolation is modeled by transferring wetness values
and applying a cohesion force between sand particles accordingly. Although they
achieve similar effects, the DEM simulates one sand grain by one particle and
therefore is subject to the same scalability limitations as the model of Bell et al.
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[2005]. In contrast, we simulate the sand volume as a fluid which not only de-
couples particle resolution from the sand grains, but also facilitates a smooth
transition from dry sand to moist sand to mud.
Their method achieves interactive rates by implementing the algorithm on the
GPU. In principle our fluid and granular material simulation framework could be
accelerated using the same GPGPU technique. However, the porous flow frame-
work creates multi-resolution fluid particles which may hinder such a GPGPU
implementation (e.g. typically nearest-neighbors are searched on a grid with
only a limited amount of particles per cell).

6.10 Conclusion

In this chapter we have presented an SPH method for simulating fluid flowing
through a porous material. Rigid and deformable objects and granular volumes
are sampled by particles which represent local porosity and permeability distri-
butions at a macroscopic scale. Our diffusion method for porous flow can easily
be incorporated into existing particle-based simulations. Also the secondary ef-
fects of absorbed fluid on the body can be simulated by slight adjustments to the
implemented physics models. Various animations demonstrate these new effects
due to absorption, such as material weakening, rigid sand structures and dirt
turning into mud, which are not possible with current fluid animation systems.

In future work we would like to extend the porous flow framework to handle
multi-phase flow through a porous material. This would allow for simulations
with e.g. air-filled pores, which can form bubbles under water. Other examples
include interaction with soap and foam or transferring dirt or soil.
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Chapter 7

An Architecture for Unified SPH
Simulations

Software architecture is an important aspect of computer science. When build-
ing an elaborate simulation system as ours, featuring simulation algorithms for
fluids, elastics, cloth, rigids and sand, a good architecture is necessary. In fact,
we discovered a good architecture can even provide means to extend the range of
possible simulations and provide the animator with a tool to produce animations
that otherwise would need several animation and simulation packages.

Based on [Lenaerts and Dutré, 2009a] this chapter discusses such an architec-
ture we designed and applied to our existing simulation system. The potential
and advantages are illustrated with various animations.

7.1 Introduction

In the last two decades, many techniques to simulate the physical behavior of
fluids and solids in computer graphics have been developed and are incorporated
in animation tools. They are used to produce various effects in computer ani-
mations and movies including characters arising from water, freezing and falling
apart, or turning into sand or dust. However such visual effects are currently
not possible within a single simulation system. Instead, various simulation and
animation packages need to be combined to get the desired result, requiring
many adjustments and iterations to tune the inputs and outputs of the pipeline.

The goal of this paper is to extend the physics-based systems to interactively
model and simulate transitions from one material to another — or combinations
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of several materials and forces — together with a control system to produce
attractive visual effects. Reducing the simulation pipeline can shorten the time
spent on creating physics-based animations, and provide additional freedom to
the animator.

In recent years, several authors have proposed particle-based systems which
unify simulation algorithms for fluid flow, rigid body motion and deformations of
elastic bodies [Keiser et al., 2005; Solenthaler et al., 2006, 2007; Lenaerts et al.,
2008; Lenaerts and Dutré, 2008b]. The main idea consists of using the same
solver, usually Smoothed Particle Hydrodynamics (SPH), to compute the neces-
sary equations. Interactions and phase changes are now much easier to simulate
since computations are done on the same simulation elements, i.e. particles.
The phase changes in existing unified frameworks interpolate between elastic
or rigid materials and fluids for melting and solidification. However they are
often hard-coded in the simulator and thus limit the possibilities or extensions
to other transitions between materials.

We extend existing unified SPH systems to handle continuous changes in phys-
ical properties and forces applied on the particles, above and beyond the current
capabilities for interactions and phase changes. Therefore, we propose a gen-
eral system architecture for unifying SPH frameworks where the main idea is to
separate particles from the applied forces. Furthermore we implement our archi-
tecture into an interactive simulation and modeling prototype application using
the latest graphics hardware technology. Based on physical building blocks, this
system provides mechanisms to interpolate the behavior of fluids and objects
to easily and interactively create animations featuring both physical plausible
simulations and special effects.

Overview

We start a detailed discussing of our architecture in Section 7.2. Our imple-
mentation is explained in Section 7.3. The potential of our final unified SPH
framework is illustrated by various animations in Section 7.4 and discussed in
Section 7.5. The final Section 7.6 concludes this chapter.

7.2 Architecture

During a simulation, particular force models are applied on particles. One of
the benefits of solving these models in a unified SPH system is that common
parts only have to be performed once and similar parts can be grouped together
thereby boosting the overall performance. However, instead of only restructuring
the way the forces are computed (i.e. grouping similar parts of the solvers), we
also propose to restructure the way the forces are applied to provide mechanisms
for combining forces and transitions between forces. The key idea is to make an
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explicit separation between particles, their properties and applied forces.
As described in Chapter 2, particles are actually points in space with cer-

tain properties describing the volume of the simulated fluid or object. During
the simulation, particular forces are applied on the points. The main idea of
this simulation architecture is to make an explicit separation between particles
(points) and their properties and applied forces.

7.2.1 Force Behaviors

Each force has its own set of properties defining the behavior or the character-
istics of the force the simulator should apply to the particles. Gravitation is a
simple example of such a force, where the constant gravitational acceleration g
is a property. Other forces, such as wind, explosions or control forces can also
be described. We implemented the physics models and their parameters from
Chapters 3 to 5 in our system. For example, an elasticity force has properties
such as Young’s modulus, Poisson’s ratio and damping, which are needed to
solve Hooke’s law (see Figure 7.1).

Instead of applying just one force to a set of particles, the user is free to
apply several forces (Figure 7.2). We use the animation time line to define
multiple forces. For example, fluid forces together with gravity and control
forces. Dimensions different from the time line such as temperature or pressure
can also be used. This means forces can be assigned to the whole particle volume
(see for example Figure 7.5) or even per particle (see for example Figure 7.8).

Forces can be combined using key frames (Figure 7.2). Each key frame has an
associated weight varying from 0 to 1 for the corresponding force. This allows the
user to model various transitions and combinations of forces. For each time step,
the animator combines the properties of the forces to one set of properties for
each particle. Multiple occurrences of the same property are weighted according
to the interpolated forces. The ratios of the active forces are also stored in each
particle and updated in each time step for use in the simulator.

Fluid

- Speed of sound
- Viscosity
- Surface tension

Elastic

- Young's modulus
- Poisson's ratio
- Elastic limit
- Plastic limit
- Damping

Control

- Attraction strength
- Velocity influence
- Support range

Figure 7.1: Forces on particles, such as fluid or elastic forces, are described by
a number of properties characterizing the force the simulator should apply.
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Animator

time
FF F

Simulator

particle

Behavior Properties F Behavior Force Computation

current properties

Figure 7.2: The general flow of the architecture. The user can define several
forces (i.e. gravity, material forces, ...) on the animation time line using
keyframes. In each time step the active forces are evaluated and the result-
ing properties are stored in the particles. Forces are applied to each particle
using the weights defined on the animation time line.

The simulator processes the particles and applies the forces in the ratios as
defined by the keyframe weights. Including the force weight in the force com-
putations can sometimes enrich transitions between forces. For example, sand
computations can use the weight to control the amount of shearing sand flow
versus rigidity.

Defining forces for a certain object or fluid volume can be done in a graphical
user interface similar to audio and video editors. The user selects and drags the
desired forces on a time line having multiple tracks as in Figure 7.2. They can
adjust the default force properties, then set the keyframes and transitions and
finally activates the simulator.

7.2.2 Forces

To accommodate the introduced force weighting scheme, a few changes to the
classical SPH simulation algorithm are necessary.

Before an actual simulation step can be performed the current state of par-
ticle properties must be computed for each particle to know its properties and
force weights. Then, an SPH fluid solver typically requires two passes over the
particles; one to compute the density for each particle and one to compute forces
between particles and advect the particles with the flow. When incorporating
rigid, elastic or sand solvers, the last pass is usually split into two or three passes.

70



7.2 Architecture

For each neighboring p:

Pressure Force

Viscosity Force

Surface Tension

Interface Tension

Temperature Diffusion

Displacement Gradient

Stress/Strain

For each neighboring p:

Friction Force

Elastic Force

For each p in cluster:

Inertia

Total Force/Torque

For each p in cluster:

Rigid Force

Fluid Elastic Cloth Sand Rigid All

For each p:

Gravity

A

B

C

Figure 7.3: The force computations structured by the type of operation on the
particles p; (a) Forces acting on single particles, (b) forces acting between neigh-
boring particles and (c) forces acting on a cluster of particles.

For example, to enforce rigid body motion, particle forces need to be computed
and accumulated first in order to know the total force and torque on the particle
volume.

In general, we see three types of force computations on particles (Figure 7.3).
While some forces act on single particles, e.g. gravity, others are applied between
neighboring particles (e.g. elasticity) or on a cluster of particles (e.g. rigidity).
The key idea is to divide the force computation into three stages corresponding
to the aforementioned types. Forces requiring several passes over the particles
can be split into subparts. This way, a plug-in architecture arises, making the
integration of future forces fairly easy. Figure 7.3 provides a high level overview
of the force computations needed to simulate the physics models (forces) dis-
cussed in Chapters 3, 4 and 5. The different force computations are grouped
into the three types of forces, requiring five passes over the particles. Of course,
only the active forces are actually computed.

7.2.3 Transitions and Combinations

We used a linear interpolation scheme to determine the force properties and
weights, but any other interpolation scheme can be used.
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Our framework generalizes transitions and lets the animator decide the behav-
ior of the transition. Using a combination of forces the desired transition can be
modeled. For example, transitioning from or to elastic is done instantaneously
by discarding or storing the reference neighborhood, but a highly viscous fluid
can be used to provide the illusion of a continuous transition. Likewise, mak-
ing a fluid rigid, can be done instantaneous, or via a viscous fluid or an elastic
material.

As an example of non-physics based forces, we implemented the concept of
control particles, presented by Thürey et al. [2006], as a force. Particles with
control forces will attract neighboring particles and move them along. However,
in [Thürey et al., 2006] the control particles did not take up physical volume. As
noted earlier, including the weights in the force computations can be beneficial.
We use the force weights to exclude certain particle interactions as a way of
dealing with control particles.
Typically, control particles are samples from an animation (see for example
Figure 7.7). However, by combining a control force with another force, such as
cloth (Figure 7.9), we can perform both simulations at the same time instead of
using a pipeline consisting of several simulation tools.

7.3 System Implementation

The proposed architecture was first implemented by refactoring our existing
SPH system for fluid flow and elastic simulations on the CPU. This proved to
be fairly straightforward, illustrating the simplicity of the proposed architecture.
Second, a new GPU simulation tool was built in which the primary objective
was modeling and simulating at interactive frame rates. Being able to model
the transitions and combinations of behaviors, and checking the effects on the
simulation interactively, is an important step forward for animators.

Resembling a typical 3D modeling package the user is presented an OpenGL
rendering of the scene containing the particle volume (Figure 7.4). A secondary
window showing the keyframed behaviors over a time line is available. Here, the
user can modify the keyframes. Simulation parameters and force properties can
be edited in the settings window on the right. Other modeling functionalities
include pausing and playing the animation, rewinding the simulation to a certain
point in time, adjusting keyframes and resuming the simulation from that point
on.

In Figure 7.4 we show a live screen capture while we model a breaking dam
simulation which assumes the shape of a rubber ducky using control particles.
Timing the control force versus the water simulation can be a labor intensive,
trial-and-error process on today’s frameworks. Running at 25% of real-time
simulations however, this interactive simulation allows for rapid refinements of
timings.
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Figure 7.4: Our interactive prototype application showing an OpenGL render-
ing of the particle volume and the keyframes on the behavior track. Interactive
simulations are achieved by implementing the simulation engine using CUDA.

Our prototype modeling tool was implemented using NVIDIA’s CUDA tech-
nology [NVIDIA, 2006] allowing for parallel execution of the force computations
on the particle volume. Compared to a fluid simulation performed on a single-
core CPU, which needs 0.5s per time step to process 50, 000 particles, our CUDA
implementation is 125 times faster running at an average of 250 time steps per
second on a 2.93 GHz CPU with 4 GB of memory and a GeForce GTX 280
GPU. Although this simulation engine is not fully optimized, it does illustrate
the potential of SPH simulations on graphics hardware and the prospects of our
modeling tool.

7.4 Animations

We modeled a set of animations illustrating the potential of our framework
(see also the accompanying videos). While some of these animations may be
possible within existing frameworks, our system allows them to be simulated in
one framework with much more control for the animator.

To illustrate changing particle properties over time, we modeled three fluids
with different densities put on top of each other (see Figure 7.5). Once the fluids
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Figure 7.5: Three fluids with different densities are layered in equilibrium.
When we change the density of the bottom and top fluids, Rayleigh-Taylor
instability is shown and the two fluids switch places.

Figure 7.6: A red liquid is poured into the shape of a rubber ducky, which then
hardens to an elastic material and falls down into a container of water.

come to rest, we gradually change the density of the top and bottom fluids. As
a result, both fluids switch places. The simulation was performed on 260, 000
particles taking approximately 4 minutes per animation frame on a 2.66GHz
quad-core computer.

Animating the transition from a fluid to an elastic body is performed in Figure
7.6. A red fluid is poured into the shape of a rubber ducky. Once the shape is
completely filled the fluid hardens and is dropped in the water container below.
There, the less dense ducky floats on the water until we change it back to fluid.
The simulation consists of 230,000 particles, taking on average 40s to compute
one animation frame or 0.60s for each step on an 3.0GHz 8-core computer.

In Figure 7.7 a galloping horse animation guides a simulation using control
particles. During the animation the simulated volume seamlessly fades from
sand to water and from water to honey. Notice the flow differences for each
of the substances. While water nicely follows the horse movements, the highly
viscous honey and the friction in the sand try to resist the flow. Approximately
170,000 particles were processed simulating sand, water and honey, taking 1.5s
for each time step or 70s per animation frame on a 3.0GHz 8-core computer.
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1 3 4 50 2 Time (s)

Figure 7.7: A galloping horse animation guides a simulation seamlessly fading
between sand, water and honey. The keyframes defining the transitions between
the three forces are visualized on the animation time line below.

Figure 7.8: A burning candle simulation showing melting and re-solidifying of
wax. The particle’s temperature is used to fade between the elastic and liquid
regime.

Figure 7.8 is an example of defining keyframes for forces on other dimensions
than time. We modeled a burning candle showing melting an re-solidifying of
wax. This example applies the capabilities of the proposed architecture in a
more realistic setting. The particle’s temperature controls the transition from
elastic material to fluid (melting) and back (re-solidifying). Compared to other
unified SPH frameworks, such as [Solenthaler et al., 2006], which also uses an
interpolation between elastic and fluid for melting, our scheme allows the ani-
mator to model the precise transitions in a graphical user interface instead of
hard-coding the interpolation. Spatially varying properties is one of the ad-
vantages of particle-based approaches and our scheme further expands this to
spatially varying forces. The candle consists of 20,000 particles requiring 0.15s
per time step on a 2.66GHz quad-core computer.

As discussed in Section 7.2.3, control particles can be steered by a simulation
instead of a predefined animation sequence. In Figure 7.9 a character performs a
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Simulation Particles Step (s) Frame (s) CPU (GHz)
Densities 260,000 0.70 240 4x2.66
Ducky 230,000 0.60 40 8x3.0
Horse 170,000 1.50 70 8x3.0
Candle 20,000 0.15 27 4x2.66
Dress 136,000 0.49 35 4x2.66

Table 7.1: An overview of timing statistics for the presented simulations. Av-
erage timings are given per time step and per animation frame.

dance wearing a dress made of red paint. We use the cloth simulator to provide
the dynamics of control particles which sample the dress. Extra fluid is emitted
over the entire surface of the dress to keep the dress sampled with fluid despite
the splashes and gravity. The simulation started with approximately 18,000
cloth/control particles and 18,000 fluid particles. By the end of the animation
100,000 additional fluid particles were created.

An overview of the particle numbers and CPU timings of the discussed simu-
lations is given in Table 7.1. Figure 7.5 required more than twice the simulation
time compared to the other simulations because we used a smaller time step to
keep the large density differences stable. The horse animation (Figure 7.7) con-
sisted of approximately 6,000 control particles for each animation frame. This
required additional nearest neighbor queries with double support ranges to shape
the flow, which explains the longer simulation times. Overall, we did not no-
tice any significant slow down in simulation times compared to the framework
without the introduced behavior scheme.

7.5 Discussion

We chose to work with an SPH framework unifying the solvers for fluids, rigid
and elastic bodies, cloth and sand. This may not be the best framework to
simulate certain materials. For example, a better choice to simulate elasticity
are Moving Least Squares techniques [Müller et al., 2004a] which are rotation
invariant. However, the benefit is that the different SPH solvers can be inte-
grated into one framework much easier. As illustrated by Figure 7.3 in Section
7.2.2 similar parts can be found and integrated, which also benefits performance.
Our architecture introduces some extra work since particle properties have to
be computed from the key-framed forces in each time step, but this is only a
marginal cost compared to the nearest neighbor queries and force computations
needed for an SPH solver.

The force weighting scheme provides freedom to apply forces and transitions
between materials. However, it could be expanded by introducing separate
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Figure 7.9: A dancing woman wearing a dress made of red paint. The paint
splashes as the dress sweeps around. Simultaneously simulating cloth dynamics
and fluid flow is possible by combining control forces and elastic forces.
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weights or interpolation schemes per property to provide more detailed options.
Surface meshes were extracted using the color field of [Solenthaler et al., 2007]

presented in Chapter 2 and the marching cubes algorithm [Lorensen and Cline,
1987]. Often, a high resolution mesh is animated by sampling the volume with
particles and matching the mesh to the particles’ displacements [Müller et al.,
2004a]. For large deformations, such as transitions to fluids, the deformed mesh
should comply with topology changes of the underlying particle model, such
as merging and splitting, which is not trivial. In our experiments, we found a
simple blend between the two meshes during rendering to suffice. However, a
better solution was recently presented by Wojtan et al. [2009].

7.6 Conclusion

We have presented a general architecture for unifying SPH frameworks featuring
an efficient plug-in structure for force computations. The main idea of the
architecture is separating particles from the applied forces in order to easily
key-frame the simulation. We implemented our architecture as an animation
and simulation tool using CUDA. The result is an interactive system based on
physical and non physical components where various forces can be combined and
transitions between materials and forces can be modeled. We showed animations
showing physically plausible melting and solidifying behavior, but also fictional
transitions from sand to water or fluids behaving as cloth.

Though the presented animations were modeled using an OpenGL preview
window and a basic graphical user interface to define behaviors and keyframes,
this did not prevent us showing various special effects. Integrated into a proper
animation modeling package, we believe our approach will be a powerful tool for
designing a wide range of animation effects.
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Chapter 8

Conclusion

This final chapter summarizes the work presented in this dissertation. The
main ideas and our achievements are presented once more in Section 8.1. Contri-
butions are summarized in Section 8.2 and thoughts on future work are written
down in Section 8.3.

8.1 Summary

In the last decade fluid simulations have received quite a lot of attention in com-
puter graphics animations. In more recent years fluid animations became more
mature and authors have presented the simulation of new phenomena such as the
formation of foam [Cleary et al., 2007] or presented new and better ways to sim-
ulate interactions [Solenthaler and Pajarola, 2008; Rungjiratananon et al., 2008]
and phase changes [Solenthaler et al., 2007]. It is this trend this dissertation has
followed. We have focused on interactions in which the fluid can affect the object
and its material it is interacting with.

Our main observation of previous fluid animations was the lack of wet surfaces.
Fluids only interacted with the (deforming) geometry of objects. In reality how-
ever many materials can be defined as porous at a certain scale, meaning many
objects can absorb water inside their volume. We presented a novel algorithm
capable of simulating this important phenomenon. The center piece of this al-
gorithm is the concept of porous particles which make abstraction of local pore
structures. We applied the law of Darcy governing porous flow on these porous
particles, making the internal fluid flow possible by means of a diffusion process.
We coupled porous objects to external fluids to be able to simulate fluid absorp-
tion and emission. Our algorithm treats both the internal flow as well as the
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external flow in a uniform manner hereby benefitting from the underlying par-
ticle framework. We showed how secondary effects of the absorbed fluid on the
porous material can be incorporated in existing particle-based frameworks for
simulating rigid bodies, elastic bodies, cloth and granular materials. This lead
to the animation of new unseen effects including mass and buoyancy changes,
weakening of elastic materials, sticky wet cloth, moist sand sculptures and mud
formation.

To accommodate the new porous flow algorithm a large particle framework
needed to be built. We not only implemented various existing algorithms for
simulating fluid flow, elastic bodies, rigid bodies and granular materials in one
unifying framework, but we also created new simulation algorithms for cloth and
sand in the same unifying manner.

The simulation systems developed in computer graphics try to relieve ani-
mators from having to model real-life phenomena accurately and realistically.
Our porous flow contributions were developed with this goal in mind. On the
other hand, the simulation systems also need to provide as much freedom for the
animator as possible. Therefore we proposed a novel architecture for particle-
based simulation systems capable of simulating a wide range of materials. This
architecture divides the simulation system into building blocks (i.e. behaviors)
and transforms them into true animation tools by which various combinations
and transitions can be modeled. We implemented this architecture in a proto-
type animation system featuring interactive simulation and manipulation of the
particle volumes, giving the animator rapid feedback about the animated scene.
Our various animations demonstrate both plausible simulations as fictional an-
imations.

The work described in this dissertation mainly contributes in the field of
physics-based animations. We were the first to present the full 3D simulation
of porous flow and its effects in the domain of computer graphics. We hope we
have hereby opened a door to a new line of research or at least motivated others
to broaden their scope of applications and incorporate porous materials.

8.2 Summary of Contributions

Below we summarize this dissertation per chapter and the corresponding original
contributions.

Chapter 4

We have presented the two-way coupling of a fluid to thin deformable shells
in a unified particle model using Smoothed Particle Hydrodynamics (SPH) for
the simulation of fluid and shells. Our results show realistic shell and cloth
animations interacting with fluids without any leaks.
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This work was developed as part of [Lenaerts et al., 2008] and was also pre-
sented at ACM SIGGRAPH as a poster [Lenaerts and Dutré, 2008a].

Chapter 5

In this chapter we have shown how the fluid-sand model of Zhu and Bridson
[2005] can be simulated in a unified SPH framework. Simulating sand as contin-
uous volumes enabled animations consisting of larger amounts of sand compared
to previous approaches. We’ve also studied the visualization of sand and con-
clude rendering pseudo-random sand grains for each simulation particle offers a
good balance between speed and conveying the illusion of sand. Furthermore it
offers a nice flexibility which provides ways for post-process refinements.

This SPH sand simulation algorithm was published in [Lenaerts and Dutré,
2009b] and presented at the Eurographics 2009 conference in Munich, Germany.
Porting the original fluid-sand model to SPH was performed by the author.
During the experiments for rendering sand volumes the author was assisted by
Jef-Aram Van Gorp, a master student.

Chapter 6

This chapter presented the first algorithm for simulating porous flow in com-
puter graphics. Porous objects are sampled by particles which represent local
porosity and permeability distributions at a macroscopic scale. Using an SPH
fluid method we diffuse fluid mass through these porous particles. Not only the
internal flow, but also fluid absorption and emission were described. We showed
how our diffusion method for porous flow and secondary effects because of the
absorbed fluid can easily be applied to existing particle frameworks for rigid,
elastic and granular materials. Various animations demonstrate these effects,
such as material weakening, rigid sand structures and dirt turning into mud,
which are not possible with previous fluid animation systems.

The porous flow framework presented in this chapter is a collaboration with
Bart Adams (Stanford University) and Philip Dutré (Katholieke Universiteit
Leuven) [Lenaerts et al., 2008]. It was presented at the annual ACM SIGGRAPH
conference in Los Angeles, California. Bart Adams contributed his implementa-
tion of distance fields, shape matching and provided the closing hand model. The
author constructed and implemented the porous flow algorithm. He also mod-
eled and rendered the accompanying animations. Peter Vangorp and Jurgen
Laurijssen assisted during the final rendering stages. In [Lenaerts and Dutré,
2009b] the author extended his porous flow framework and applied it to sand
volumes to be able to mix fluids and granular materials.
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Chapter 7

We have presented a general architecture for unifying SPH frameworks featuring
an efficient plug-in structure for force computations. The main idea of the
architecture is to separate particles from the applied forces in order to easily
key-frame the simulation. We implemented our architecture as an animation
and simulation tool using CUDA. The result is an interactive system based on
physical and non-physical components where various forces can be combined
and transitions between materials and forces can be modeled. We presented
animations showing physically plausible melting and solidifying behavior, but
also fictional transitions from sand to water or fluids behaving as cloth.

Though the presented animations were modeled using an OpenGL preview
window and a basic graphical user interface to define behaviors and keyframes,
this did not prevent us from showing various special effects. Integrated into a
proper animation modeling package, we believe our approach will be a powerful
tool for designing a wide range of animation effects.

The author was responsible for redesigning his framework into the proposed
architecture. He also re-implemented this framework on graphics hardware to
achieve an interactive modeling tool. All animations were modeled and rendered
by the author. This work is described in Lenaerts and Dutré [2009a].

8.3 Future Work

Research is never finished and our work is no exception either. Here we describe
possible extensions and directions for future research related to our work and to
the domain of particle-based fluid simulations in general.

• In Chapter 4 we described the simulation of thin shells and cloth in com-
bination with fluids. Though we can handle thin shells containing fluids
without leaking, far elastic stretching can still cause large spaces between
particles through which fluid particles can move. Adaptively resampling
those regions should solve this problem and even make new simulations
such as water-filled balloons possible.

• In Chapter 5 we investigated the simulation and rendering of sand volumes.
As future work we would like to do more experiments to ameliorate both
the simulation as the rendering of sand. First steps in this direction are
already being taken by Alduán et al. [2009]. An SPH adaptation of their
technique should deserve attention.

• An SPH framework for simulating porous flow was described in Chapter 6.
It is however limited to one single phase. Because todays animation sys-
tems are also capable of multi-phase simulations, it would be beneficial
to extend our porous flow framework to handle such internal multi-phase
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flow. In other domains such as geology, research has already been done on
multi-phase porous flow, so it should be possible to adapt the necessary
physics to our framework. Then, new effects such as a sponge interact-
ing with water and foam or cloth with water and dirt become possible in
computer graphics.

• In recent years APIs for GPU programming become more and more versa-
tile and user-friendly. As a consequence fluid simulations on the GPU are
now really taking off. This does not only decrease the computation time
for fluid simulations, but will also lead to more detailed and complex fluid
animations and the simulation of new phenomena. With this in mind, it
would be interesting to see our prototype from Chapter 7 being further
developed into a full animation package. Also recent advances in GPU
implementations of adaptive particle models [Yan et al., 2009] may make
a performance increase of our porous flow framework possible.

From personal communications and recent publications we can conclude that
our work is being acknowledged and starts to have a certain impact on the
computer graphics community [Becker et al., 2009a; Solenthaler and Pajarola,
2009; Krǐstof et al., 2009; Alduán et al., 2009; Robinson-Mosher et al., 2009;
Pabst et al., 2009; Oh et al., 2009; Gao et al., 2009] and even other domains
such as geology. We hope this work will inspire new research in the field of
computer animation and will lead to new and attractive fluid animations.
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Alduán, I., Tena, Á., and Otaduy, M. A. Simulation of high-resolution granular
media. In Proc. of Congreso Español de Informática Gráfica. 2009.
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