
Particle Splatting: Interactive

Rendering of Particle-Based Simulation

Data

Bart Adams

Toon Lenaerts

Philip Dutré

Report CW453, July 2006

n Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Particle Splatting: Interactive

Rendering of Particle-Based Simulation

Data

Bart Adams

Toon Lenaerts

Philip Dutré

Report CW453, July 2006

Department of Computer Science, K.U.Leuven

Abstract

Particle-based simulation methods are gaining popularity for cre-

ating animations of physical phenomena such as fluids and melting

solids. Extracting and visualizing an explicit surface corresponding

to the volume of particles is however a difficult and time-consuming

task, especially with increasing particle set sizes. In this paper, we

present a novel interactive rendering algorithm for rasterizing a sur-

face which conforms to the particle cloud. We show how projection

and blending of overlapping spheres assigned to the particles yields

smooth surfaces and discuss how this algorithm can be implemented

on the GPU.

The presented rendering algorithm allows rapid high-quality sur-

face visualization for particle-based simulations, without the need to

extract an explicit surface representation. Therefore, it has applica-

tions for both preview rendering of particle simulations and real-time

fluid visualization for interactive applications.

CR Subject Classification : I3.5, I3.7



Particle Splatting: Interactive Rendering of

Particle-Based Simulation Data

Bart Adams, Toon Lenaerts, Philip Dutré

July 10, 2006

Abstract

Particle-based simulation methods are gaining popularity for creat-
ing animations of physical phenomena such as fluids and melting solids.
Extracting and visualizing an explicit surface corresponding to the vol-
ume of particles is however a difficult and time-consuming task, especially
with increasing particle set sizes. In this paper, we present a novel in-
teractive rendering algorithm for rasterizing a surface which conforms to
the particle cloud. We show how projection and blending of overlapping
spheres assigned to the particles yields smooth surfaces and discuss how
this algorithm can be implemented on the GPU.

The presented rendering algorithm allows rapid high-quality surface
visualization for particle-based simulations, without the need to extract
an explicit surface representation. Therefore, it has applications for both
preview rendering of particle simulations and real-time fluid visualization
for interactive applications.

1 Introduction

Particle-based methods are gaining popularity for physics-based animation of
natural phenomena such as fluids or melting solids. Particles are used for ex-
ample in grid-based methods to accurately track the fluid motion (e.g., [4, 9])
or as simulation nodes in meshless methods for solving the governing equations,
e.g., using smoothed particle hydrodynamics (SPH) [7, 19].

The motion of a particle system can be visualized by rendering the individual
particles as simple point sprites or spheres. This can be performed efficiently
using current graphics hardware and is a viable approach for previewing vi-
sualizations of particle simulations. However, the resulting image is often not
satisfactory due to high frequency artifacts and lack of proper visibility and
shading computations.

High quality renderings can be generated by constructing a surface corre-
sponding to the volume of particles. The most popular method for defining such
a surface is by iso-surface extraction of an implicit function defined by the par-
ticles (e.g., using metaballs [1]). The extraction is most often performed using
some variant of the marching cubes algorithm [15] on a background grid.

1



Particle SplattingMarching Squares

t t + ∆tt t + ∆t

Figure 1: Left: the marching cubes (marching squares in 2D) algorithm can
produce significantly different discretizations of a single particle sphere in sub-
sequent time steps. Right: our particle splatting algorithm results in time-
coherent renderings of the particle surface.

However, such grid-based methods entail various limitations. First, eval-
uating the implicit function at the grid points is computationally expensive,
especially for large particle set sizes. Second and most importantly, when the
particles move through the grid, the triangulation obtained from the marching
cubes algorithm changes from one time step to the next (see also figure 1), lead-
ing to temporal discretization artifacts (such as popping highlights), which are
clearly visible when using a low grid resolution. Hiding these artifacts requires
increasing the grid resolution which in turn further prohibits interactive visual-
izations. Finally, marching cubes methods are often CPU intensive, significantly
slowing down the whole physics-based simulation.

1.1 Contribution

In this paper, we will present a novel surface rendering algorithm for particle-
based simulations. We overcome aforementioned limitations by using a splatting
approach which directly uses the particles and can be entirely implemented on
the GPU. From a high level point of view our algorithm proceeds by rasterizing
each particle as a sphere and by blending the foremost overlapping spheres
in image space to obtain smooth shaded surfaces. No connectivity or other
neighborhood information is needed and grid-related discretization artifacts are
completely avoided (cf. figure 1). Our rendering method results in interactive
and high-quality renderings of large dynamic particle animations.

Note that although from an implementation point of view our algorithm pro-
ceeds along similar steps as a surfel splatting algorithm, the problem statement
is quite different. We are given with an input point set of unoriented particles
which are used as nodes for the physical simulation. They can be considered a
discrete sampling of the fluid’s volume. In contrast, when visualizing point set
surfaces using surfel splatting, the input is a set of oriented surface points (i.e.,
surface normals are provided) which can be considered a discrete sampling of
the object’s surface.

2



1.2 Related Work

Because we will treat the simulation framework in this paper as a black box,
the discussion of related work is limited to methods for surface extraction and
rendering algorithms for particle-based simulations. For a more general overview
on simulation algorithms for computer graphics, we refer the reader to [21].

A very popular particle-based method for fluid simulation is smoothed par-
ticle hydrodynamics (SPH) (see [17, 16, 14] for good overviews). Desbrun and
Cani introduced SPH to the computer graphics community in a series of papers
on the animation of soft highly deformable substances [6, 7, 8]. Based on [24],
they propose to define the surface as the iso-level set of an implicit function
defined from the mass density [7]. A similar surface definition for particle sim-
ulations is used in [19], [22] and [5]. They define the surface as the iso-level of
a color field function [18] and use the marching cubes algorithm [15] to extract
an explicit triangle mesh which samples the level set. An alternative surface
tracking algorithm for particles is proposed in [8]. They store and evolve the
implicit function on a background grid and introduce surface tension to hide
the particle granularity.

A common limitation of the discussed Eulerian surface extraction algorithms
is that (temporal) discretization artifacts may appear, due to the use of a back-
ground grid (cf. figure 1). To overcome this limitation, Müller et al. [19] propose
a Lagrangian surface extraction method where they classify particles near the
border of the fluid domain as surface particles. By converting the volumetric
particles to surfels, a standard surface splatting algorithm [26] can be used. Al-
though they avoid the discussed grid-related problems, their method still has to
evaluate the (gradient of the) field function at the particle positions. Moreover,
it fails in the case of a single isolated particle. Another Lagrangian surfel-based
fluid tracking method is proposed in [12]. They maintain a point-sampled sur-
face wrapped around and tracked along with the simulation particles. However,
this method is very CPU intensive and too time consuming for interactive vi-
sualizations, due to the constant re-sampling and smoothing of the point set
surface.

Our rendering algorithm is inspired by the work of [4], [2] and [11]. Carlson
et al. [4] propose to advect and splat particles in a 3D grid. After low-pass fil-
tering, they can construct a high-quality polygonal surface corresponding to the
fluid flow. Since our system is targeted at interactive visualizations, we avoid
the expensive 3D splatting and polygonization and propose to splat particles to
image space using a technique very similar to surface splatting for surfel models
[26, 2]. We show how our particle splatting algorithm corresponds to rasteriza-
tion of a Lagrangian particle level set, introduced by Hieber and Koumoutsakos
[11].

1.3 Overview

We start by discussing the surface definition based on a field function defined
by the particles (section 2) and motivate how this can be formulated as a par-

3



ticle splatting algorithm. We discuss the rendering algorithm (section 3) based
on sphere rasterization (section 3.1) and smooth blending of particle attributes
(section 3.2). The accumulated surface normals and colors are written to a sep-
arate buffer which will be used in a final pass for per-pixel shading (section 3.3).
We discuss implementation details in section 4 and results in section 5. We
conclude this paper in section 6 with a discussion and an outlook on future
work.

2 Motivation

The surface of the particle volume is traditionally computed as the iso-level of a
field function defined by the particles. By assigning compactly supported weight
functions W to the particles, such a field function at position x can be easily
obtained as the sum of the contributions of each of the particles pi:

φ(x) =
∑

pi

ViW (x − xi, hi), (1)

with xi the center of the particle pi and Vi and hi its volume and support radius
respectively. The surface can then be defined as φ−1(I) with I an appropriate
iso-value, i.e., it is defined as the location of points where the field function φ
evaluates to a certain value I. This definition is analogous to the traditional
metaballs [1] and is often denoted as a color field [19, 20].

The weight functions used in equation 1 can be used as well for interpolating
particle properties such as for example a color value ci used for shading:

c(x) =

∑

pi
ciViW (x − xi, hi)

∑

pi
ViW (x − xi, hi)

. (2)

Note that one could also use the more accurate opacity-weighted color interpo-
lation scheme as proposed in [25]. However, as will be shown in section 3, this
would require the particles to be sorted along the viewing direction, increasing
the computational complexity.

The (unnormalized) surface normal n(x) at a point x (on the iso-level) can
be obtained as the gradient of the level set function:

n(x) = ∇φ(x) =
∑

pi

Vi∇W (x − xi, hi). (3)

If radially symmetric weight functions are used, this can be written as:

n(x) = ∇φ(x) =
∑

pi

Vi

dW (r, hi)

dr

x − xi

‖x − xi‖
, (4)

with r = ‖x − xi‖. Thus: the surface normal at a point x is computed as the
weighted sum of the surface normals (evaluated at x) of the spheres with center
xi and radius r = ‖x − xi‖.

4



We will follow this observation and compute weighted average sphere normals
for smooth shading of the fluid surface. We will do this by rasterizing the zero
level of φ, i.e., the surface is defined as φ−1(0). Note, however, that at the
zero level set, there is only one particle contributing to φ and ∇φ. As a result,
using colors and surface normals as in equations 2 and 4, results in non-smooth
and discontinuous shading. Instead of computing surface properties exactly on
the zero level set, we will follow a splatting approach where sphere colors and
normals within an ǫ-distance to the zero level set are blended to obtain smooth
surfaces. This can be implemented in a similar fashion as traditional surfel
splatting algorithms [26, 23, 2] as will be shown in the next section. However,
special attention is required to the construction of appropriate weight functions
to ensure smooth continuous renderings.

Our method has the advantage that no neighborhood information between
particles is required and that there is no root finding, i.e., we avoid explicit (and
expensive) evaluation of the field function. Each particle is treated separately
and splatted individually to accumulate the final shading parameters. As op-
posed to traditional particle-based fluid visualization algorithms (e.g., [19, 20, 5])
based on the marching cubes algorithm [15], our method does not suffer from
temporal discretization artifacts (cf. figure 1).

3 Particle Splatting Algorithm

Our algorithm proceeds as follows (see also figure 2):

1. The zero level φ−1(0) is rendered in the depth buffer by rasterizing the
spheres (xi, hi) (see section 3.1). The resulting depth value is shifted over
a distance ǫ to the back. Similar to [2], we refer to this step as the visibility
splatting step.

2. Next, the spheres (xi, hi) are rendered again, using additive blending to
accumulate the normals ni and colors ci of the fragments corresponding
to the particles which pass the depth test (i.e., the fragments which are
within a distance ǫ to the zero level set). During blending, we use ap-
propriate weight functions which ensure a continuous blending of sphere
colors and normals (see section 3.2). Hence, in this attribute blending step,
we approximate the computation of a smooth surface color and normal as
defined in equations 2 and 4 .

3. Finally, in the shading step, we normalize the accumulated particle prop-
erties and perform per-pixel shading to compute the actual color of the
image pixel.

Note that, although we render a volume of particles, this rendering algorithm
will rasterize a surface corresponding to these particles.

5



image plane

ǫ

zǫ

A

B

xi

hi

Figure 2: Illustration of the particle splatting algorithm. In a first pass, the
particles are rendered as spheres to determine the depth of the foremost particles
(dashed line). This depth is shifted backwards over a distance ǫ (bold line). In
a second step, we blend normals and colors of the spheres which pass the depth
test using additive blending. Appropriate weight functions ensure continuous
blending (fragment A and B are assigned a zero weight). The blended attributes
are used in a final pass for per-pixel shading.

3.1 Sphere Rasterization

Both in the visibility pass and the attribute blending pass, each particle pi

is rendered as a sphere. Given the particle’s position xi and radius hi, we
approximate the size h′

i of the projected sphere by perspectively scaling hi [3].
Each particle pi is then rendered as a single square of size 2h′

i × 2h′
i in image

space.
For each of the fragments covered by this square, we decide whether it lies

inside or outside the projection of the sphere. Instead of using local ray casting
(as in [2]) to obtain perspectively correct sphere projections, we simply discard
fragments with projected position x

′ outside a circle with center x
′
i and radius

h′
i, i.e., when ‖x′−x

′
i‖ > h′

i. Note that, although computing perspective correct
sphere projections can be implemented fairly easy, it requires considerably more
computations. As we experienced no significant quality degradation, we propose
to use the discussed approximation.

Given the fragment position x
′ in the projected square and its world space

position x (on the square), we can compute the depth value zi(x
′) for this

fragment simply as:

zi(x
′) = zi −

√

(hi)2 − ‖x − xi‖2, (5)

with zi the depth value corresponding to the sphere center xi. We define zǫ(x
′) =

minpi
(zi(x

′)) + ǫ as the pixel’s ǫ-shifted minimal depth value which is written
to the z-buffer as the result of the first rendering pass (see also figure 2).

6



Figure 3: Two spheres of equal radius hi are rendered a distance hi apart. On
the left, the two spheres are rendered without blending, causing a discontinuity
in normals and colors. In the middle image, the spheres are blended using only
W 1

i . As can be seen at the transition from one sphere to the next, discontinuities
are still visible. In the right image, both W 1

i and W 2

i are used, resulting in a
smooth blending. We used ǫ = hi/4 for the middle and right image.

Similar calculations yield the normal ni(x
′) corresponding to fragment x

′

for particle pi. We will use these sphere normals in the second rendering pass
to compute smooth surface normals.

3.2 Sphere Attribute Blending

In the second pass of our algorithm, the frontmost sphere attributes are accu-
mulated using additive blending. To obtain a smooth shaded surface without
discontinuities, we use a multiplication of two weighting functions. The first
function defines a linear fall-off around the projected particle’s position x

′
i in

the plane parallel to the view plane:

W 1

i (x′) =

{

1 −
‖x′−x

′

i
‖

h′

i

if ‖x′ − x
′
i‖ ≤ h′

i,

0 otherwise.
(6)

This weight ensures that fragments corresponding to points on the silhouette
of a sphere (e.g., fragment A on figure 2) have zero weight, thereby enabling
smooth blending of overlapping spheres. Note that we get the computation of
W 1

i for free, as we also use it for testing whether a fragment lies inside or outside
the projected sphere. The effect of using W 1

i is illustrated for two spheres in
the middle of figure 3.

Although W 1

i allows smooth blending of overlapping sphere properties, dis-
continuities in the blended shading attributes can still arise. As depicted in
figure 2, some spheres are only partially visible, i.e., parts of are in front of
the z-buffer, others are behind. Blending discontinuities arise at fragments that
correspond to points on a sphere intersecting the z-buffer depth (e.g., fragment
B on figure 2), as the weight W 1

i is typically non-zero there. This can be clearly
seen on the middle image of figure 3. To avoid these discontinuities, we in-
troduce a second weighting function W 2

i which takes into account the depth

7



information:

W 2

i (x′) =
zǫ(x

′) − zi(x
′)

ǫ
. (7)

Hence, W 2

i evaluates to zero at fragments which coincide with the ǫ-shifted
depth buffer.

The product of the two weighting functions results in a C0 continuous func-
tion (except at depth discontinuities) which evaluates to zero both at the silhou-
ette of a sphere as well as at the sphere positions which coincide with the depth
buffer. As a consequence, weighting the sphere colors and normals with W 1

i W 2

i

results in a continuous blending of overlapping particles (see also figure 3, right).
Note that other weight functions can be used for W 1

i and W 2

i as long as
their product satisfies aforementioned properties. As defined in equation 7,
W 2

i mostly evaluates to 1 and is only introduced to ensure zero contribution at
spheres crossing the depth image, justifying the choice of such a simple blending
function.

To summarize, in the second pass of the algorithm, we compute for each
fragment the accumulated color, normal and weight:

c(x′) =
∑

pi

W 1

i (x′)W 2

i (x′)ci, (8)

n(x′) =
∑

pi

W 1

i (x′)W 2

i (x′)ni(x
′), (9)

W (x′) =
∑

pi

W 1

i (x′)W 2

i (x′). (10)

3.3 Per-pixel Deferred Shading

In the final pass of the algorithm, we compute per-pixel shading using the
accumulated surface properties. The normalized surface normal is given by
n(x′)/‖n(x′)‖ and the normalized color attributes by c(x′)/W (x′). The world
coordinates for each fragment can easily be computed from the depth value
zǫ(x

′), obtained from the first pass, by inverse projection.
As will be shown in section 5, we can incorporate various custom shading

effects in the deferred shading pass, similar to [2].

4 Implementation Details

We implemented the proposed particle splatting algorithm using OpengGL and
Cg. Sphere rasterization is performed as discussed in section 3.1. We send
each particle as a single vertex to the pipeline and render it as a GL POINT. A
vertex shader is responsible for computing the projected sphere size. In the
first pass, a simple fragment program is used to fill the ǫ-shifted depth buffer
(we use ǫ = 1.5hi, with hi the support radius of particle pi). In the attribute
blending pass, we proceed along similar steps and render the particles a second
time. A more advanced fragment program is used to compute the weights,

8



Animation Visibility Blending Shading

Melting (110k) 35% 60% 5%
Beethoven (18k) 25% 45% 30%

Bowl 1 (59k) 29% 48% 23%
Bowl 2 (63k) 29% 52% 19%

Table 1: Average number of particles and percentage of time spent on each of
the three rendering passes, averaged over the whole animation, while moving
the camera around the scene.

colors and normals as discussed in section 3.2. Fragments which are invisible
are discarded in the beginning of the fragment program using the depth buffer
from the first rendering pass. This way, we can cull most of the spheres early and
spend most of the work on the contributing particles. We use multiple render
targets and additive blending to accumulate the weighted colors and normals.
In the final shading pass, we render a window-sized rectangle and normalize the
accumulated surface normals and color attributes in a fragment program which
are then used for per-pixel shading.

5 Results

The resulting images and accompanying movies are rendered on a 2.2GHz desk-
top PC with a GeForce 7800 graphics board at a resolution of 640× 480 pixels.
Relative timings for each of the three passes of the rendering algorithm are given
in table 1.

Figure 4 shows four frames from a pre-computed melting simulation of the
Stanford bunny [4]. Approximately 110k particles were used to track the mo-
tion of the melting bunny. For this animation we used shadow mapping and
a custom jelly shader, which calculates Phong shading together with refraction
and reflection. The animation is rendered at an average rate of 11 FPS (or 1.2M
particles per second). This timing includes all shading computations.

Figure 5 shows different frames from an SPH-based viscous fluid animation,
rendered with our algorithm. The average number and maximal number of
particles are 18k and 20k respectively. The average rendering time, including
the rendering of Beethoven’s bust and shadow computation, is 47 FPS (or 850k
particles per second).

Finally, figure 6 shows renderings for two other SPH-based viscous fluid
simulations. Two streams of oil-like fluids are mixed in a bowl. Due to the
blending of particle colors in the attribute blending pass, we are able to visualize
the mixing of fluid colors in the simulations. The average and maximal number
of particles are approximately 60k and 120k respectively. The renderings of
these animations run at an average of 20 FPS (or 1.2M particles per second).

Compared to other interactive particle visualization techniques, we believe
that we achieve significantly higher frame rates. Müller et al. [19] report frame
rates of 5 FPS for a simulation with 2.2k particles and the marching cubes algo-

9



rithm for surface extraction. Using the surfel rendering algorithm, they obtain
frame rates of 20 FPS. Note that these timings include the time spent on the
SPH simulation (they do not provide separate timings for surface construction
and rendering). Keiser et al. [12] report surface reconstruction timings of 1.3
seconds for a fluid simulation with 3k particles (the time spent on rendering is
not included here). Our system achieves rendering frame rates of over 100 FPS
for dynamic simulations of approximately 10k particles and around 10 FPS for
simulations of approximately 100k particles.

6 Discussion & Future Work

The main strength of our algorithm lies in the fact that it works directly with
the particle positions and radii. There is no explicit surface extraction step
involved and no spatial data structures and neighborhood queries are required
to evaluate the field function. Therefore, it is extremely well-suited for dynamic
particle sets.

Our visualization method is Lagrangian in nature, i.e., in essence, the vi-
sualized surface detail is advected with the particles and evaluated at image
resolution. This way, we avoid discretization artifacts which typically occur in
Eulerian grid-based methods. As such, we feel that our particle splatting algo-
rithm is in the same spirit and has similar advantages as meshless particle-based
simulation algorithms, which are also Lagrangian formulations.

Although our particle splatting algorithm allows rapid and high-quality visu-
alization of surfaces corresponding to particle-based simulations, there are some
limitations and possible directions for future work.

Firstly, as discussed in section 2, the rasterized surface corresponds to the
zero level set of the field function defined by the particles. As a consequence,
the visualized surface might appear blobby. This is especially the case when
single disconnected particles are visualized (see for example figure 5). To obtain
surfaces which more tightly fit the particle set, it is preferable to use other level
sets φ(I)−1 with I > 0. Visualizing the corresponding surface would require ray
tracing with root finding (see [10] for a thorough discussion). However, as only a
few particles contribute at each point on the level set, this root finding is a very
localized operation. We are currently exploring ways to efficiently implement
this on graphics hardware using a similar particle splatting approach.

Another limitation of our rendering algorithm is that it does not support
backface culling. At the time of rendering, there is no surface information
available and culling can only be performed in the second pass for particles
which are occluded by the ǫ-shifted depth buffer. Culling these particles results
in approximately 15% speed increase for the Beethoven and bowl simulations
and even 25% for the melting bunny scene. However, efficient data structures
might help culling more invisible spheres.

Better rendering quality could be obtained by using potential additional
information provided by the simulation algorithm. For example when using
surface tension forces in an SPH simulation [19], the gradient of the level set

10



function (cf. equation 3) is computed and known for the particles. Passing this
information on to the rendering algorithm could allow using other shapes such as
ellipsoids to rasterize the individual particles. This could reduce the blobbyness
of the resulting surfaces. However, the method proposed in this paper is general
enough to also be used for other particle-based simulations that do not provide
this information (e.g., [4]).

Finally, we are planning to incorporate screen-space anti-aliasing filters, sim-
ilar to the EWA approximation of [2] to handle extreme minifications. Also, it
would be interesting to use our particle splatting algorithm together with a
GPU-based particle simulation algorithm such as the one proposed in [13].

7 Conclusion

Our particle splatting algorithm provides a new way to interactively visualize a
smoothly shaded surface corresponding to a volume of particles. In contrast to
other techniques, the algorithm does not require any neighborhood information,
nor does it suffer from time-dependent discretization artifacts as the surface
detail is simply advected with the particles and evaluated at image resolution.
The algorithm furthermore scales linearly in the number of particles and can
be implemented entirely on the GPU, freeing CPU power which can be used by
the simulation algorithm.

References

[1] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans.
Graph., 1(3):235–256, 1982.

[2] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s GPUs. In Proceedings of Sympo-
sium on Point-Based Graphics 2005, pages 17–24, 2005.

[3] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In
Proceedings of Symposium on Point-Based Graphics 2004, pages 25–32,
2004.

[4] Mark Carlson, Peter Mucha, R. Brooks Van Horn III, and Greg Turk. Melt-
ing and flowing. In Proceedings of the 2002 ACM SIGGRAPH Symposium
on Computer Animation, pages 167–174, July 2002.

[5] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based vis-
coelastic fluid simulation. In Symposium on Computer Animation 2005,
pages 219–228, july 2005.

[6] Mathieu Desbrun and Marie-Paule Cani. Animating soft substances with
implicit surfaces. In Computer Graphics Proceedings, pages 287–290. ACM
SIGGRAPH, 1995.

11



Figure 4: The animation of the melting Stanford bunny [4] is visualized with
our particle splatting algorithm and shaded with a custom jelly shader.

12



Figure 5: Dropping viscous goop on Beethoven’s bust. This animation is ob-
tained from a viscous fluid simulation using smoothed particle hydrodynamics.

13



Figure 6: Mixing two oil-like fluids in a bowl. The simulations are performed
using smoothed particle hydrodynamics. Due to the color blending in the second
rendering pass, we are able to visualize the mixing fluid colors.

14



[7] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new
paradigm for animating highly deformable bodies. In 6th Eurographics
Workshop on Computer Animation and Simulation ’96, pages 61–76, 1996.

[8] Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active implicit surface
for animation. In Proceedings of Graphics Interface, pages 143–150, 1998.

[9] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid
particle level set method for improved interface capturing. J. Comput.
Phys., 183(1):83–116, 2002.

[10] John C. Hart. Ray tracing implicit surfaces. In SIGGRAPH 93 Modeling,
Visualizing, and Animating Implicit Surfaces course notes, pages 13–1 to
13–15. 1993.

[11] Simone E. Hieber and Petros Koumoutsakos. A Lagrangian particle level
set method. Journal of Computational Physics, 210(1):342–367, nov 2005.

[12] Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré,
and Markus Gross. A unified Lagrangian approach to solid-fluid animation.
In Proceedings of the Eurographics Symposium on Point-Based Graphics,
2005.

[13] Andreas Kolb and Nicolas Cuntz. Dynamic particle coupling for GPU-
based fluid simulation. In Proceedings of the 18th Symposium on Simulation
Techniques, pages 722–727, 2005.

[14] G. R. Liu and M. B. Liu. Smoothed particle hydrodynamics, a meshfree
particle method. World Scientific Publishing, 2003.

[15] William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. In SIGGRAPH ’87: Proceedings
of the 14th annual conference on Computer graphics and interactive tech-
niques, pages 163–169, New York, NY, USA, 1987. ACM Press.

[16] J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog. Phys.,
68:1703–1758, 2005.

[17] J.J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. and
Astrophysics, 30:543, 1992.

[18] J.P. Morris. Simulating surface tension with smoothed particle hydrody-
namics. International Journal for Numerical Methods in Fluids, 33(3):333–
353, 2000.

[19] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid
simulation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer animation, pages 154–
159, 2003.

15



[20] Matthias Müller, Barbara Solenthaler, Richard, and Markus Gross.
Particle-based fluid-fluid interaction. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 237–244, New York, NY, USA, 2005. ACM Press.

[21] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and
Mark Carlson. Physically based deformable models in computer graphics.
In Eurographics 2005 State of the Art Report, 2005.

[22] Simon Premoze, Tolga Tasdizen, James Bigler, Aaron E. Lefohn, and
Ross T. Whitaker. Particle-based simulation of fluids. Computer Graphics
Forum, 22(3):401–410, 2003.

[23] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A
hardware accelerated approach to high quality point rendering. Computer
Graphics Forum, 21(3):461–470, 2002.

[24] D. Tonnesen. Modeling liquids and solids using thermal particles. In Pro-
ceedings of Graphics Interface, pages 255–262, 1991.

[25] Craig M. Wittenbrink, Thomas Malzbender, and Michael E. Goss. Opacity-
weighted color interpolation, for volume sampling. In VVS ’98: Proceedings
of the 1998 IEEE symposium on Volume visualization, pages 135–142, New
York, NY, USA, 1998. ACM Press.

[26] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.
Surface splatting. In Proceedings of ACM SIGGRAPH 2001, pages 371–
378, 2001.

16


