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On robust Monte Carlo algorithms
for multi-pass global illumination

Frank Suykens - De Laet

Department of Computer Science,
Katholieke Universiteit Leuven

ABSTRACT

Computer-generated realistic images are being used increasingly in applications such as architecture,
lighting design and visual effects in the movie industry. Therefore, realistic image synthesis, the subject
of this dissertation, has remained one of the most important research areas in computer graphics for many
years.

Realistic image synthesis takes as input a description of a three-dimensional scene and a virtual camera
looking upon that scene. By simulating the light transport, the intensity of each pixel in the image as seen
by the camera can be computed. Light transport can be described by an integral equation, often called the
rendering equation Algorithms that compute all possible interreflections of light in the scene and thus
provide a full solution to the rendering equation, are cafjiedbal illuminationalgorithms. Such algorithms
produce images that are virtually indistinguishable from a real photograph, but unfortunately they are slow.

In this dissertation we present several new techniques to construct more robust and more efficient global
illumination algorithms. Our work focuses dvlonte Carlo algorithmsand multi-pass methodsMonte
Carlo algorithms statistically estimate integrals and are very well suited for solving transport problems.
Multi-pass methods combine several rendering algorithms into a single method. A good multi-pass config-
uration will preserve the strengths of each individual component, while avoiding its weaknesses.

First, new techniques for designing better multi-pass methods are presented, including weighted multi-
pass methods that weight the contributions of different algorithms automatically in a provably good manner.
Second, path differentials are introduced. They allow to augment light transport paths with neighborhood
information which is useful in many global illumination algorithms. Finally a technique is presented to
reduce the memory requirements and to control the error in photon mapping, an efficient and popular global
illumination algorithm.

All these techniques result in more robust and efficient global illumination algorithms and contribute to

the increasing use of these algorithms in computer graphics applications.
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Notations and abbreviations

Abbreviations

BPT | bidirectional path tracing

cdf cumulative distribution function
MIS multiple importance sampling
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NN nearest neighbor

pdf probability density function
SR | stored partial radiance solution

Geometry
A finite area
dA differential area
As total scene area
Apix area of a pixel
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W direction (unit vector)
Wi incoming or incident direction
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d;w = cosB dw
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Q
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G(x,Y)

projected solid angle measure

3D points in the scene, path vertices
a path withn vertices
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ray casting function
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Probability and Monte Carlo
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1 Introduction

This dissertation contributes to the field of computer graphics, and more specifically realistic image synthe-
sis. New techniques and algorithms to compute the physically based light transport in a scene are presented,;
techniques that improve on previous work both in terms of efficiency and robustness of the algorithms.

In this introductory chapter, we will discuss the importance and difficulty of realistic image synthe-
sis §1.1) and physically based light transpoi2) in the broader context of computer graphics and its
applications. Different approaches to simulating light transport are summariz&édinThe specific goals
and contributions of this dissertation are stategllid. Section 1.5 outlines the organization of the text and

concludes this chapter.

1.1 Realisticimage synthesis

The quest for visual realism has played an important role in computer graphics research over the last 30
years. Computer-generated images evolved from simple line drawings to photo-realistic images. Photo-
realistic image synthesis aims at the generation of images by computer from a description of a three-
dimensional scene, and this in such a way that the resulting rendered images appear to an observer as if
they were real photographs.

Many applications benefit or even depend on the creation of realistic images. Special effects in movies,
pilot training, the flourishing market of computer games, advertising, art and architecture all leverage the
latest advancements in realistic rendering.

In many applications, the actual rendering algorithms used in production are bdsedldglfuminatiort
the appearance of objects is only determined by the illumination emitted directly by a light source. Indirect
illumination received from the other objects is ignored, and this imposes a severe limitation on the realism
of the generated images. Effects such as the soft indirect light caused by a designer lamp illuminating the
ceiling, the color bleeding between differently colored walls, the hazy refraction through a frosted glass
pane, or the caustics cast by glass objects are all not reproduced automatically. A local illumination model
places the responsibility of creating a naturally looking illumination in a scene on the modeler, who often
has to carefully place many additional lights to simulate the indirect illumination.

Global illuminationalgorithms do compute all the possible light interreflections in a scene and repro-
duce the aforementioned effects automatically. However, the global illumination problem is inherently
much harder, and reliable algorithms are slow. This is why the simpler local illumination model has pre-

vailed for such a long time. Nevertheless, times are changing. For example in August 2001, Kaveh Kardan,
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R&D Manager at Square USA (where the realistic, computer generated motion picture ‘Final Fantasy, The
Spirits Within’ was made), stated in an interview by Ars Technitdoelieve that global illumination will
become the norm. Direct illumination renderers like PRMan (Pixar's PhotoRealistic RenderMan) have
reached the limit of the realism they can produce in terms of lightiddthough global illumination algo-

rithms start to find their way into production renderers, there is still a great need for more efficient, more
reliable and robust algorithms.

The work in this thesis is concerned wigthysically basedmage synthesis. Physically based image
synthesis adds an additional requirement to just photo-realism or global illumination: the computations
should be based on physical principles. This leads to quantitative results that are predictive: the computer
generated images accurately predict the appearance of objects, without the need to actually build them
first. The predictive nature of physically based image synthesis opens up a whole new set of applications,
including lighting design, lighting optimization, architectural visualizations, and product design in general.

Physically based image synthesis leads to the ultimate realism by computing an accurate simulation
of the light transport in a scene. Developing robust light transport algorithms that adapt well to different
lighting conditions and complex scenes, is a difficult problem. It seems obvious, however, that the better
and faster the algorithms become, the more they will be used. Given the improvement of both computational
power and the added efficiency of new light transport techniques, it is to be expected that, in the near future,
all photo-realistic rendering will be done using physically based light transport algorithms.

In the next few sections we will analyze the problem and solution of physically based light transport in

more detail and indicate our contributions to this field.

1.2 Physically based light transport

The input to a physically based light transport simulation is a full description of the scene to be rendered.
This description includes the 3D geometry, the material properties, the emission characteristics of the light
sources and a virtual camera. The goal of the simulation is then to compute a realistic image of the scene,
as seen by the virtual camera.

In physically based light transport, ‘light’ is represented by actual radiometric quantities. An important
quantity isradiance that can be defined intuitively as the intensity of an infinitely small beam of light. Itis
expressed as the energy per unit area, solid angle, wavelength and time (see chapter 2 for a more detailed
description of radiometric quantities).

Computing an image requires the estimation of the average radiance that reaches each pixel in the image
plane, which is done by simulating the transport of light from the light sources to the camera. The light
transport itself is described by a mathematical model that defines how light is emitted and how it interacts

with the surfaces in the scene. Such a model can be based on geometric optics, wave optics or even quantum
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optics.

For graphics applications, a model based on geometric optics is usually sufficient. The rendering equa-
tion, proposed by Kajiya [54], is the prevalent model in computer graphics. Radiance is assumed to travel in
straight lines and only interacts with the scene on the surfaces. With these assumptions, the radiance in the
scene is expressed by an integral equation, a Fredholm equation of the second kind, that states the outgoing
radiance on a surface as a function of the self-emitted radiance and the radiance incident on the surface.
Of course, the incident radiance originates as outgoing radiance leaving from other surfaces, which reveals
the recursive nature of this equation. All research into global illumination aims at efficiently solving this
integral equation for the widest possible variety of scenes.

Some lighting effects, however, are not directly modeled by the rendering equation. This includes
participating media, such as smoke or fire, and several effects that cannot be described by geometric optics
alone, such as diffraction, polarization, fluorescence and interference. These effects can usually be included
in a simulation by an extension of the mathematical model used.

Some global illumination algorithms make further simplifications to the model, for example by assum-
ing all surfaces to be perfectly diffuse, by restricting the geometry to polygonal surfaces only, or by limiting
non-diffuse scattering to perfectly specular reflection or refraction.

In this work we aim to solve the rendering equation in its full generality. No restrictions are placed on
the surface characteristics or the geometry, and a full global illumination solution is required. (A detailed

mathematical description of our light transport model is given in chapter 2.)

1.3 Algorithms for simulating light transport

Many algorithms for solving the global illumination problem have been proposed. In this section we

overview some of the main characteristics of the different approaches.

1.3.1 Object-space versus image-space

Object-space algorithms An object-space approach computes a representation of the radiance within the
scene itself, independent of any virtual camera.

For example, classical radiosity algorithms compute a constant diffuse radiance value for each (polyg-
onal) element in the scene. Another example is a photon map, where photons or particles are emitted from
the light sources and stored individually by recording their position and incident direction.

To compute an image, the average radiance through each pixel is estimated by reconstructing the radi-
ance from the object-space solution on the visible surfaces.

The main advantage of object-space approaches is the view-independence of the solution: it can be

used for many different views (although the accuracy is seldom high enough for special cases such as an
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extreme close-up). The main difficulty, however, is the huge memory requirement. All algorithms have to
make simplifying assumptions about the light transport model in order to reduce the memory requirements
to an acceptable level. For example, the radiance reflected by highly specular objects is never included in

an object-space solution.

Image-space algorithms An image-space algorithm directly computes pixel values, without first storing
illumination information in the scene. Typical examples are ray tracing and path tracing, that trace paths
from the camera through the pixels into the scene to gather the illumination.

Image-space algorithms only require a small amount of memory and adapt well to complex scenes.
Since no illumination is stored, however, the same illumination may have to be computed over and over
again. For example, the illumination of a surface that is directly visible as well as through a mirror reflection,

is computed two times independently.

Multi-pass algorithms The most successful global illumination approaches combine object-space and
image-space algorithms into a multi-pass method. The total light transport is separated in a number of
disjunct parts, and each part is handled by a different algorithm. Typically diffuse-like illumination, which
can be stored using a reasonable amount of memory, is computed in object-space. An image-space pass will
then compute the other illumination but will also use the previously stored solution as much as possible.
The key to a good multi-pass algorithm is an intelligent separation of illumination and a clever combi-
nation of algorithms that minimizes memory consumption, computation time and error. A large part of this
dissertation is focused towards deriving good multi-pass algorithms. We will present technical and theo-
retical tools that allow the construction of better multi-pass methods. Applying these techniques to current

multi-pass methods, results in a significant improvement of these methods.

1.3.2 Monte Carlo algorithms

Global illumination algorithms can also be classified into deterministic and stochastic algorithms.

Deterministic algorithms use standard cubature rules to approximate the integrals in the rendering equa-
tion. Well known examples are deterministic radiosity algorithms: The rendering equation is discretized
into a set of linear equations, and the form factors, 4D integrals that determine the energy transfer between
a pair of elements, are computed with deterministic integration rules.

Stochastic or Monte Carlo algorithms estimate integrals by averaging a high number of statistical trials.
They are very well suited for estimating the high-dimensional integrals that occur in global illumination.
They adapt well to a complex geometry and are not limited to polygonal scenes.

Examples of Monte Carlo rendering algorithms range from image-space methods, such as path tracing

or bidirectional path tracing, to object-space methods, such as Monte Carlo radiosity and several variations
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of particle tracing.
Over the years it has become clear that Monte Carlo algorithms are faster, more robust, and more
versatile than their deterministic counterparts. Therefore, we mainly use Monte Carlo algorithms in this

work.
Unbiased versus consistent

An important property of Monte Carlo estimators is whether they are unbiased or not.

A Monte Carlo estimator isnbiasedvhen its expected value is equal to the exact value of the estimated
integral. The error in an unbiased estimator is only caused by statistical fluctuations around the exact solu-
tion. In computed images this error is perceived as noise. This noise slowly disappears with an increasing
number of samples (i.e., as the square root of the number of samples). This slow convergence is the biggest
drawback of Monte Carlo algorithms. Difficult illumination features can require a very large number of
samples before the noise drops below an acceptable level.

The expected value of lsiasedMonte Carlo algorithm differs from the correct solution. Biased esti-
mators are only useful when the systematic error, the bias, can be estimated or when it is known that the
bias also disappears with an increasing number of samples. In the latter case, the estimator is said to be
consistent Consistent estimators can be much more efficient than unbiased estimators. Although the exact
error is usually hard to estimate, the noise reduction that can be obtained with certain biased but consistent
methods, makes their use worthwhile.

In this work we focus on Monte Carlo algorithms, because of their generality, robustness and ease of
use. We will consider both unbiased and consistent estimators, and offer some techniques to trade noise for

bias in order to get a better, visually pleasing solution.

1.4 Contributions of this work

In this section we will preview the main contributions of this dissertation to the global illumination research.
We have developed general techniques rather than proposing a single global illumination algorithm.
Depending on the specific application, different global illumination methods may be preferable. Most
of our contributions consist of versatile tools that can be plugged into many existing global illumination
algorithms, so that their scope is not limited to one specific algorithm.
Our techniques are targeted towards both Monte Carlo and multi-pass algorithms, as they have proven
to be the most efficient and robust global illumination algorithms.

More specifically our main contributions are the following:

e Regular expression based path evaluationThis technical tool helps the design of more advanced

multi-pass configurations. Regular expressions are an easy way to specify a specific part of the
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light transport. This technique derives the evaluation or contribution of individual light transport
paths directly from the user-defined regular expressions. This provides a convenient way to specify

complex multi-pass configurations with a high degree of separation.

e Weighted multi-pass methods All existing multi-pass methods employ a perfect separation strat-

egy: each part of the light transport is assigned to exactly one algorithm or combination of algorithms.

Weighted multi-pass methods provide a new and general theoretical framework that allows overlap-
ping transport in a multi-pass configuration. To ensure a correct solution, where all transport is only
accounted for once, weighting is used instead of separation. Good weighting heuristics automatically
preserve the strengths of the individual methods within the overlapping transport, without the need

of an extreme separation.

Underneath the weighted multi-pass methods lies a new Monte Carlo variance reduction technique
that allows the combination of several sampling techniques of different dimensions, extending stan-

dard multiple importance sampling [116].

e Path differentials: Many global illumination algorithms trace paths through the scene. These paths
depend on a number of generating variables that form a single point sample in path space. However,
such a point sample does not provide any information about the neighborhood of a path: what is the

region of influence of a vertex in a path or how far away are neighboring paths?

This is exactly the information that is provided by path differentials. By computing partial derivatives
of the directions and vertices in a path (with respect to the variables), and by estimating a small
neighborhood around the sample point in path space, the region of influefocémint of a path can

be estimated in each path vertex.

Such footprint information can be used in many global illumination applications. We have applied
it to local texture filtering, hierarchical particle tracing radiosity and importance computations, but
many more applications are possible. In all applications, the path differentials provide a good trade-

off between bias and noise.

Specific contributions are the computation of the partial derivatives for arbitrary Monte Carlo sampled
paths, heuristics for the determination of a neighborhood that ensures coherence over the footprint, a

convenient representation of the footprint and all the applications.

e Density control for photon maps: The final contribution is targeted towards a specific multi-pass
algorithm named photon mapping. Photon mapping is an efficient and robust two-pass algorithm for
computing global illumination. A first, object-space pass emits photons from the light sources and

stores them all individually in a photon map. A second, image-space pass renders an image using the
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information in the photon maps.

Storing all individual photons in the photon map requires a lot of memory. We present a density
control framework that selectively stores photons until a certain target density criterion is met. By
using a target density criterion that is based on the current viewing position, photons are concentrated

in important parts of the scene.

Results of the density control show a significant decrease in the number of stored photons, and maybe

even more important, the framework leads the way to fully error-controlled photon mapping.

1.5 Organization of the dissertation

The remainder of the text is organized as follows:
e Chapters 2, 3 and 4 are introductory.

— Chapter 2 summarizes the specific mathematical model for light transport that is used in this
dissertation. It also introduces the necessary geometrical and radiometrical concepts and nota-

tion.

— Chapter 3 provides a brief introduction to Monte Carlo integration and Monte Carlo render-
ing. Basic concepts, variance reduction techniques, and some important Monte Carlo rendering

algorithms that are frequently used throughout the text, are briefly reviewed.

— Chapter 4 introduces multi-pass methods, a regular expression notation for light transport paths,

and an overview of existing multi-pass configurations.

Readers who are well familiar with Monte Carlo rendering and multi-pass methods, might want to

just skim through the chapters to pick up the specific notation and conventions used in the text.

e Chapter 5 describes the regular expression based path evaluation. Its use is demonstrated by showing

that a combination of bidirectional path tracing and a radiosity algorithm is easy with this tool.

e Chapter 6 presents the weighted multi-pass methods. The theory is explained in a general Monte

Carlo setting and then applied to the combination of bidirectional path tracing and radiosity.

o Path differentials are developed in chapter 7. Besides the general theory and implementation details,
two applications are presented: local texture filtering and hierarchical particle tracing radiosity. A

third application is given as part of the density control framework for photon maps in chapter 9.

e In chapter 8, a general overview of photon mapping is given. An analysis of the strengths and diffi-

culties is given, along with a number of important optimizations to make photon mapping efficient.
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e The density control framework for photon mapping is described in chapter 9. This includes a redis-
tribution technique to account for the power of unstored photons, an importance driven target density

heuristic and several results.

e Conclusions are presented in chapter 10, along with some global directions for future research. More

specific extensions of the techniques themselves are given in conclusions at the end of each chapter.

All the methods presented in this thesis were implement&®EKNDERPARK [9], an extensive global illumi-
nation software package that is being developed together with Philippe Bekaert. All results and all images
were generated wWitRENDERPARK. Its source code is freely available fromww.renderpark.be

and forms an interesting addition to this dissertation.



2 A mathematical model for light
transport

2.1 Introduction

Physically based image synthesis requires the simulation of light transport in a scene. Computing such
a simulation requires a well defined mathematical model for light transport. The model must specify the

complete light transport problem, and should include the following aspects:

e A specification of the scene to be rendered: This includes a description of the geometry, the material

properties and the light sources.
e The radiometric quantities used to describe the light transport.
e The transport model itself that describes the scattering and propagation of light.

e A specification of the measurements that need to be computed. For image synthesis, this requires a

virtual camera model that relates pixel values to the light incident on the image plane.

The model used in this dissertation is based on the rendering equation. This model was first presented
by Kajiya in 1986 [54]. It was a general mathematical model that encompassed all previous —more ad
hoc— approaches to realistic image synthesis. Once the problem was cast into a clear mathematical model,
many existing numerical techniques could be applied to solve it, and this is what happened over the years.
Monte Carlo and finite element techniques were applied to solve the equation more efficiently, while others
extended the model to include effects such as participating media, dispersion, and diffraction.

The rendering equation, however, was not really new. Light transfer is a transport problem governed by
equations similar to those encountered in radiative heat transfer and neutron transport. Rendering research
has borrowed and continues to borrow many ideas and techniques from these and other fields and adapted

them to the typical needs of computer graphics: photo-realistic images.

Overview

This chapter summarizes the mathematical model used in this dissertation and establishes notation.
The scene geometry and some important geometrical units are defif2@ irRadiometric quantities

are given ing2.3, and material models for the surfaces in the scene are defif2dlinGiven these prelim-

inaries, the actual transport model, the rendering equation, can be de¢fngd Finally, the measurement

equation and a simple pinhole camera model define how pixel values can be estidiid (
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The remaining sections provide some alternative formulations of the light transport model. Adjoint
equations §2.7) reformulate the light transport problem from a measurement viewpoint. Opeg@} (
and the path integral formulatio§4.9) can provide convenient shorthand notations of the light transport
model.

We have tried to restrict our description of the light transport model to a bare minimum. Only the
things that will be needed further on, are described in some detail. There are many other works on global
illumination that contain a much more elaborate discussion on mathematical models for light transport.
For more information the reader is referred to the work by Arvo [4], Cohen and Wallace [22§ R

Lafortune [60] or the thorough treatment in the PhD dissertation of Eric Veach [114].

2.2 Geometry

This section defines some common geometrical entities used in the light transport formulations and algo-

rithms.

2.2.1 Scene geometry

The scene geometrgonsists of a number of 2D surfaces, curved or planar, that can scatter, emit, or absorb
light. Apart from its geometrical extent, each surface requires an intersection operation for ray tracing,
normal vectors, and a parameterization (i.e., a mapping from the unit square to the surface) that is used for
illumination storage and texture mapping.

A point on a surface is given by a position vector (notatieny). Associated with each point is a
differential areadA. Thetotal areaof the union of all surfaces in the scene will be denoted\bywith an

‘s’ from ‘scene’).
2.2.2 Directions and solid angles

A directionis represented by a unit vectaxr The set of all possible directions is the unit sph@eg, that
has a solid angle ofrtsteradian. A hemisphefe,;; covers2m steradian. Associated with a direction is the
differential solid angledw, that is used for integration over finite solid angles.

Another interesting measure for integration over solid angles is the projected solid angle. The differen-

tial projected solid anglel, w is defined as
d, w(x) = cosB(x) dw(x),

with cosB(x) = Nx - w, andNy the normal inx, a surface point in the scene. Further on, the argurpent
will be dropped whenever it is clear which point is meant. The use of the projected solid angle simplifies

many of the light transport equations.



CHAPTER 2. A MATHEMATICAL MODEL FOR LIGHT TRANSPORT 11
2.2.3 Paths

In many global illumination algorithms paths are traced through the scene.

A path vertexx is a point on one of the surfaces in the scene (including the camera or any other sensor
surface). The domain of a vertex covers the total scenefarea

A pathX is defined as a collection of vertic&s= x1x2...X,. Thelengthof the path is the number
of verticesn. Path spaceQ is the domain containing all possible paths of arbitrary lend®y.denotes

the space of all possible paths of length It is the product space of the domain of each path vertex:

Qn=Asx...x As= Al
2.3 Radiometry

This work deals with physically based rendering. Instead of ad hoc quantities such as ‘light intensity’ and
colors that lie betweefi andl, used for example in OpenGL, real radiometric quantities are used.
The following table gives an overview of the necessary quantities and units. The definitions of the

quantities are expressed in terms of flux, that is taken as the base quantity.

Quantity | Symbol | Definition Unit

Flux [ ® Watt (W)
. d2

Radiance T3 A W /mPsr

L
Irradiance| E G = Jo, Lidiod | W/n?
B

Radiosity & = Jo, Ldiw | W/m?

L; refers to incoming or incident radiance, whilés outgoing or exitant radiance, i.e., radiance leaving the
surface.

These radiometric quantities also depend on the wavelength ofljgfiten innm We will not explic-
itly distinguish between the different wavelengths, but consider the quantities as vectors with a number of

components dependent on the wavelength:
L=[Ly,...LyJ -

Most of the time in graphics, also in our implementation, only three components (red, green, and blue) are

used. The algorithms presented in this text apply without change to any number of wavelengths.

2.4 Material properties

The material properties define how a surface reflects, refracts, and emits light. The common abstraction

for reflection and refraction used in graphics is the bidirectional scattering distribution function (BSDF),
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defined and discussed in the next section. Light sources that emit radiance are modeled by an emission

distribution function (EDF), defined i§2.4.2.

2.4.1 Reflection and refraction

Lets consider purely reflective surfaces first. The bidirectional reflection distribution function (BiRDF,
for a surface poink is defined as the ratio of the reflected radiance and the differential irradiance for an

incident directionuw:
L(x—
The BRDF depends on both the incoming and outgoing direction. For a fixed poihe BRDF is a
4-dimensional function.

For physically based BRDFs the Helmholtz reciprocity principle holds, which allows interchanging the
directions:

fr (X, 0 — o) = fr (X, o — ).

A sampled representation of the 4D BRDF can be measured from real surfaces using, for example, a gonio-
reflectometer. Usually such a sampled representation is converted into a simpler, empirical BRDF model
such as the Ward [123], Lafortune [61], or (modified) Phong [69, 64] model. Other models exist that are
based directly on the underlying surface physics. Their input consists of real physical parameters. The most
comprehensive is the He-Torrance-Sillion-Greenberg model [36].

For transmissive surfaces a simitgidirectional transmission distribution functig8TDF, f;)! can be
defined. Itis harder to measure and usually only perfectly specular refraction is considered, or else empirical
models are tuned with handpicked parameters.

For general rendering algorithms that can handle both reflection and refraction, it is convenient to com-
bine the BRDF and BTDF into thieidirectional scattering distribution functio(BSDF, fs). The BSDF is
defined over the full hemisphere for both incoming and outgoing directions, so in fact it is a combination of
2 BRDF-BTDF pairs, one pair for each side of the surface.

Some interesting properties of BSDFs will be discussed in the next paragraphs.
2411 Albedo

Thedirectional hemispherical reflectance albedo(p,) of a BRDF is the fraction of the incoming radiance

(for a single direction) that is reflected over the hemisphere:

Pr (X, u¥) =/Q fr (X, — o) d W -
21

loriginally the BRDFf, included subsurface scattering effects. The reflected radiance could emanate from a different position,
and the distance t® was denoted by thein f,. In graphics, however, the BRDF does not include subsurface scattering, rendering
r meaninglessr(= 0). Reassigning the meaning pfto be ‘reflection’, allows convenient notation for transmissfprand general
scatteringfs.
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Thetransmittancep; is defined similarly. The total albeds = p; + p; must be smaller thahto conserve
energy. Thabsorptionof a surface is given by — ps.

Note that the albedo changes with the incoming directipn Many BRDF or BSDF models use a
single, approximate albedo parameter to control the reflectance of a surface. For example, the modified

Phong model uses the albedo for an incoming direction perpendicular to the surface.
2.4.1.2 BSDF components

BSDFs are often characterized by the directionality of the light scattering. We will distinguish between

diffuse glossyandspecularmreflection and transmission:

¢ Diffuse reflection/transmission O,,D;): The BRDF or BTDF is constant. The scattered radiance is

equal for all outgoing directions.

e Specular reflection/transmission §,,S;): Very strong directional scattering: Most of the light is
scattered over a very small solid angle. For perfect specular scattering, the limiting case, all light is

scattered towards a single direction. In this case the BSDF is a delta function.

e Glossy reflection/transmission G,, G;): Glossy reflection encompasses anything that is not diffuse
nor specular. The glossy component exhibits moderate directional scattering: more light is reflected

in a restricted part of the hemisphere, usually around the perfectly specular scattering direction.

2.4.2 Light sources

Some surfaces, the light sources, also emit light. A light source is specified by its geometry and an emission
distribution function (EDF). The EDF defines thelf-emitted radiancd.(x — w), emitted from a poink
on a light source into a directian.

Theemittanceor self-emitted radiosity is defined as the self-emitted radiance integrated over the hemi-
sphere:

Be(X) = Le(X — w)d 0.

2n

Theself-emitted flufor a light sourcd is given by
cb(el) :/ BE(X) dA7
A
with A the surface area of the light source.
2.5 The rendering equation

This section presents the fundamental rendering equatioadince transport equationThis equation

describes the light transport in a scene. The radiance transport equation combines the geometry, the EDF,
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‘ L(X = o) = Le(X— o) + [Li(X— ) fs(X, 00— ) d o) ‘

Wo Q (Ui‘ y =rc(x — w)
\ = . \\//

X N X X

Figure 2.1: The rendering equation expresses the outgoing radiance as a function of the self-emitted radiance and an
integral over all the incoming radiance.

and the BSDF definitions into an integral equation that expresses the radiance leaving a surface ix a point
towards the direction,:
L(X — wo) = Le(X — o) + . Li (X — @) fs(X, 0o «— 03) iy . (2.1)
n

The contributions to the outgoing radiaricex — wy) are shown schematically in figure 2.1.

Note that the original rendering equation [54] was given in a slightly different form, but the form given
here is more common and uses clearly defined radiometric quantities.

The unknown incoming radiandg(x < wy) in the equation originates from outgoing radiance on other
surfaces, revealing the recursive nature of the integral equation.

In vacuum, without participating media in the scene, radiance leaving a surface will travel unchanged
until it reaches another surface. The relation between the incoming radiamecex and the outgoing

radiance. is then given by the ray casting operatian
Li(x—w)=Ly—w) withy=rc(x— w). (2.2)

The ray casting operation= rc(x — ) finds the nearest surface intersectydior a ray shot fronx in the
directionwy (see also figure 2.1).

Equations (2.1) and (2.2) provide a mathematical model for light transport in a scene: the scattered
radiance is computed by the integral in (2.1), in which the unknown incoming radiance is evaluated by
casting a ray and evaluating the reflectance equation again.

While this model allows the generation of very realistic images, it is based on geometric optics and
does not include all the physical light transport phenomena. Depending on the application it is important
to realize that certain effects are not included. Several extensions have been proposed that model missing

phenomena such as fluorescence [32], polarization [110], diffraction [104] and participating media [85].
2.6 Measurements

2.6.1 Definition

The rendering equation provides an expression for the radiance leaving a single point on a surface. A

measuremeris defined as the response of a certain sensor that (usually) combines a set of radiance values.
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Examples of measurements in image synthesis are the flux through a pixel in an image, the irradiance for a
certain surface in the scene, or the coefficients for the basis functions in a higher order radiosity algorithm.
A measurement is defined by a response fundligix — w) that defines the sensitivity of a hypothetical

(radiance) sensor placed in the scene. The total response of the sensor gives the measurement

|:/A/Qwe(x_>w)Li(X<_m)dlmdA. 2.3)

This is called thaneasurement equation
Note that the response function is defined as an exitant quantity, and that it is combined with the incom-

ing radiance function.

2.6.2 Inner product notation

Often, a measurement is written as an inner product of the response and the radiance function. Let the inner

product of two functions (x, w) andg(x, w) over a domairA x Q be defined by

(1.9 = [ [ 1xwlgix w)dwda,

AJQ

Using this inner product definition the measurement equation can be written concisely as
| = (We,Li).

2.6.3 Camera model

Computing an image corresponds to a set of specific measurements, one for each pixel. In this case, the
response function is determined by the camera model used.

We use a simple pinhole camera model, which assumes that the aperture of the camera is a single point.
For a pinhole camera this point is referred to as the ‘eye’, the ‘viewpoint’, or the ‘camera position’.

The response function for our pinhole camera is given by

_J 1-3(x—eye) wheny € Apix
We(x —y) = { 0 otherwise. (2.4)

The response function is given in terms of two points in the scene (but can be converted into a standard one
in terms of a point and an outgoing direction). The response differs from 0 only wisegqual to the eye,
and whery is located on the image plane in the pixel under consideration.

The Dirac impulse is needed for a pinhole camera in order to remove the integral over area in the
measurement equation. For other camera models it could be repladgdyrureor even more advanced
response functions [59].

The response function (2.4) measures the flux through a pixel. Since the human eye responds to radiance

rather than to flux, the pixel flux is usually converted to an average radiance value.
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2.7 Adjoint equations

The measurement equation (2.3) suggests that measurements should be computed by recursively applying
the radiance transport equation (2.1) to the unknown radiarfige— w). This is the approach taken by
path tracing for example (s€8.4.1).

Adjoint methodseverse this approach and apply the transport rules to the responsivity of the sensor.
The responsivity of the sens@t is called theemitted directional importance functipanalogous to the
emitted radiancé.. Theimportance transport equatiotescribes the importance transport in the scene:

W(X — 0d) =We(X — to) + . W (X «— @) fs(X, o — ) i@y (2.5)
n
This transport equation is the adjoint of the radiance transport equation. Note that in equation (2.5), the
direction of the BSDF evaluation is reversedd, (— ) instead of ( < «y). As such, the BSDF is
always evaluated from the light source towards the sensor. For a symmetric BSDFphen — wj) =
fs(X, wp < wy), this is not important. But when refraction or interpolated shading normals are involved, the
BSDF is not symmetric and the direction of evaluation is important [114, chapter 5].

The measurement equation can now be reformulated in terms of the equilibrium directional importance

function:

I:/A;/§2V\4(x<—w)Le(x—>w)dAdLm:(V\/.7Le>. 2.6)

In the transport and measurement equations we have used incoming and outgoing quantities for radiance
(L; andL) and for directional importancé&\{ andW). The self-emitted quantitiels,, W are defined as
outgoing. Incoming and outgoing quantities can be converted into each other by ray casting or scattering.

Measurements are always defined as a combination of an incoming and outgoing quantity

Importance quantities

Just as the directional importance corresponds to radiance, other importance quantities can be defined that
correspond to flux or irradiance.

The following table gives an overview of the corresponding quantities used in this text:

Quantity Symbol | Definition | Corresponding
radiometric quantity|
Directional importance W W Radiance

(or ‘potential’)
Importance r fQZHV\/. d,w | Irradiance

Importance flux W JaT dA Flux
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Figure 2.2: The three-point transport notation expresses transport in terms of vertices only.

2.8 Operator notation

Linear operators together with inner products are often used as a shorthand notation for integral equations.
We will not give details about an operator notation here, because we do not use it explicitly in this text
(except for the inner product notation, introduced earlier). However, some interesting properties of the light
transport equations (e.g., convergence), can be derived elegantly from the operator notation. The reader is

referred to [114, 19] for more information about light transport operators.

2.9 Path integral formulation

The radiance and importance transport equations express the transport rules in the form of an integral
equation that describdgcal scattering on a surface. The global illumination is contained in the recursive
nature of the integral equation. Several reformulations of the light transport problem were proposed that
explicitly model the multiple scattering in global illumination.

Lafortune proposed thglobal reflection distribution functioor GRDF [63]. The GRDF extends the
BRDF to include multiple scattering effects from all surfaces. A specific sampling of the GRDF resulted in
the bidirectional path tracing algorithm.

Veach used a path integral formulation [116], a common way to rewrite an integral equation as a single
integral. As such, standard integration techniques can be applied to transport problems. For example, Veach
proposed bidirectional path tracing using multiple importance sampling and the application of Metropolis
sampling to light transport. We will also use the path integral formulation in the description of bidirectional
path tracing and several multi-pass methods.

The path integral formulation requires two things: first, a variable transformation expresses the transport
equations as a three-point transport, and second, paths and the path contribution functions are introduced to

state the path integral.
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2.9.1 Three-point transport

The radiance transport equation (2.1) is expressed in terms of incoming and outgoing directions with respect
to a surface poirt. This can be rewritten using surface points only (see figure 2.2 for notation):
Lx—2)=Le(x—2)+ | Lly—=X)fs(y = x—2z)G(x,y)dAy, (2.7)
As

whereG is the geometry term:

cog6;) cog6,)
Ix—y|]2

with V (x,y) the visibility betweerx andy (1 if visible, 0 if not). The geometry factor appears, because the

G(Xay) = V(va)

9

integration over projected solid angle is replaced by an integration over the surfaces in the scene.
The measurement equation (2.3) can be rewritten using surface points too, again by transforming the

solid angle measure into an area measure:

| = We(X — Y)L(X —Y)G(X,y) dAy dA .
AsxAs

2.9.2 The path integral

The path integral is obtained by repeatedly substituting the three point transport equation (2.7) into the
transformed measurement equation. The resulting nested integrals can be reordered so that each term
corresponds to an integral over paths of a specific length. The integrands of these reordered integrals are
given by themeasurement contribution function

Given a path of lengtm, X = x;...x,, the measurement contribution functiéfX) is defined as the

actual contribution of the path to the measurenient
T(X) = Le(Xl — Xz)G(Xl,Xz) fs(Xl — X2 — X3)G(X2,X3) ...
N fs(Xn_z — Xp—1 — Xn)G(Xn_l,Xn)We(Xn_l — Xn) . (28)

Paths of different lengths have different contribution functions, as the number of substitutions (and thus the
number of nested integrals) differs. Also note that, siWgés included inf, each measurement has its own
contribution function.

Integration off (X) over the domai2 uses the area product measudfgx) = dA; x ... x dA,. Each

vertexi has an associated area measife The path integral can now be written as

| — /5 (%) du(x) . 2.9)

Sometimes it may be instructive to write this as a sum of integrals, one for each path length:

| = ni) /5 RCETOR (2.10)

More information on the path integral formulation can be found in [116].
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2.10 Conclusion

This introductory chapter presented the underlying mathematical model for light transport that is used in
this work. Although it does not model all the physical phenomena of light transport, it is sufficient for many
applications that require global illumination computations. The model was formulated in different ways:
using integral equations and as an integral over path space. Throughout the text these formulations will be
interchanged depending on the notational convenience.

Now that the light transport problem is completely defined by the mathematical model above, it is time
to look at algorithms to solve it. The next chapter discusses Monte Carlo integration, a very adequate

technigue for solving integral equations.



3 Monte Carlo integration

The mathematical model for light transport, developed in chapter 2, involves an integral equation that, in
general, cannot be solved analytically. Monte Carlo integration is a mathematical technigue that relies on
statistical properties of random variables and random sampling to numerically estimate integrals. It is well
suited for the high-dimensional integrals that arise from the light transport problem.

This chapter covers topics on Monte Carlo integration that are important for the remainder of the text.
The explanation is brief, as numerous other books and articles —including many graphics dissertations—
treat the method in great detail. Some good Monte Carlo introductions can be found in [55, 103, 34].

After some more introduction to the Monte Carlo method3nl, a bit of probability and basic Monte
Carlo integration are explained §8.2. Variance reduction technique$3(3) are key to the successful
application of Monte Carlo to difficult integration problems. Section 3.4 discusses some important Monte

Carlo rendering methods, that will be used in subsequent chapters. Conclusions are g88n in

3.1 Introduction

This section reviews a little bit of history of the Monte Carlo method and discusses its main characteristics.

3.1.1 History

While some scientists have been known to use random sampling early on for estimating integrals [55, p. 4],
the basis of the Monte Carlo method, along with its name, was formed during World War Il in Los Alamos
when the atom bomb was developed.

Monte Carlo methods estimate integrals —or other quantities that can be expressed as an expectation—
by averaging the results of a high number of statistical trials. Computers are ideal for performing such trials,
and the appearance of faster and faster computers has driven the wide spread application of Monte Carlo
methods today.

This change towards stochastic simulation with computers was adequately described by Schreider [13]:
“It is interesting to note that computers have led to a novel revolution in mathematics. Whereas previously
an investigation of a random process was regarded as being complete as soon as it was reduced to an
analytic description, nowadays it is convenient in many cases to solve an analytic problem by reducing it to
a corresponding random process and then simulating that process”

Monte Carlo methods are applied in fields as diverse as neutron transport problems, queuing theory,
radiative heat transfer and, of course, computer graphics. In computer graphics, Cook et al. used randomly

distributed rays to simulate glossy reflection, motion blur, and depth of field [24]. Although the method

20
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was a Monte Carlo application, they did not identify it as such at first. Kajiya presented the rendering
equation [54] and a Monte Carlo technique, path tracing, to solve it. This signaled the start of Monte Carlo
rendering research. In the beginning a distinction was made between radiosity methods and (image-space)
Monte Carlo methods, but later on further abstraction separated the storage method (finite elements) from
the solution method (Monte Carlo), as it should be. Today, Monte Carlo methods compute pixel intensities
but also illumination throughout the scene (e.g., Monte Carlo radiosity [5] and photon maps [47]), and they

do this very successfully.

3.1.2 Characteristics

While Monte Carlo methods are applicable to a wide variety of problems, this text focuses specifically on

solving integration problems. The core problem is the computation of an integral

I:/Qf(x)dx.

Monte Carlo estimators will approximatdy taking a lot of random samples and averaging their contribu-
tions: N
0=y 39,
whereg(;) is the contribution of the random sam@ec Q. As we will see further on, the contribu-
tion functiong depends on the integrarfd the domain, and on the way the random samples are gener-
ated ¢3.2.2).
There are several general characteristics of Monte Carlo estimators, that determine the strength and

weaknesses of the method:

e The results arstatistical in nature This means that the estimafle can be wrong, even arbitrarily
wrong. At first sight this seems to be a major drawback of the method, as one cannot be sure of the
result. However, confidence intervals can be computed which indicate how far the estimate is likely
to deviate from the correct result. These confidence intervals can be made as tight as necessary, for
example by taking more samples. Therefore, the statistical nature of the results is largely compensated

by other advantages of Monte Carlo integration.

e The evaluation of an estimator only requires the abilitgample random pointsand evaluate(§)
for these points. These are minimal requirements that make the method easily applicable to very

difficult integration problems.

e The convergence rate—how quickly the error decreases with the number of samples— of basic
Monte Carlo integration is proportional t¢’1/N. This means that to halve the error, four times as

many samples are needed. This slow convergence is one of the main driving forces in Monte Carlo
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research. Several variance reduction techniques are available that try to lower the variance of an
estimator without using more samples, or that even try to improve the convergence rate. Variance
reduction is often considered an art. Each application domain needs its own techniques and tuning to

get the most out of the samples.

Compared to deterministic integration methods, it turns out that Monte Carlo methods are preferable
for high-dimensional integrals. Deterministic integration rules of ordeave a convergence rate of

N~" in one dimension. However, they will only converge as fasa&® in d dimensions, because

theN (regularly spaced) samples need to be distributed over all dimensions. Since the convergence of
Monte Carlo methods is independent of dimensin(2), itis clear that for any ordera sufficiently
high-dimensional integral will make Monte Carlo methods converge faster. Moreover, higher order
integration rules (higher) require very smooth integrands to be effective. This is not the case in
global illumination, where many discontinuities may occur in the integrands, for example, due to

visibility changes.
e The Monte Carlo method imbust This is so because of the previous two reasons: only point

sampling is required and convergence is assured (for unbiased estimators — see further).

3.2 Basic Monte Carlo integration

3.2.1 Probability

A random variableis a variable whose outcome is determined by a random process. The process (and
the variable) can be discrete or continuous in nature. In the continuous case, each randoméheable
an associatedumulative distribution functioifcdf) P(x) defined over a domaif. The cdf defines the

probability of being smaller tham for a single experiment:
P(x) = Prob{g < x}.

Theprobability density functioifpdf) is defined as

Note that any pdf must integrate tmver its domain.
A function f(&) of a random variabl€ is itself a random variable. Thexpected valuef a random

variablef (¢) is given by

Thevarianceof (&) is given by

VIf(E) =o?[f(&)] = E [(F(&) ~E[f(8)))’] .
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The standard deviatioro [f (§)] is given as the square root of the variance. It is a useful indication of how
far the result of a single experiment can deviate from its expected value. The standard deviation is also

calledstandard erroror RMS error

Multivariate distributions  Given a pair of random variablég, ), thejoint probability P(x,y) is defined

as
P(x,y) = Prob{€ < x,{ <y}.

The joint pdf is given by
*P(x,y)
p(xa y) - axay .

Themarginal densityp(x) eliminates the dependence yin

p0) = [ pixy)ay.
The conditional probability densityp(X|y) is given by

_ pxy)

For independent random variables, the following identities hold:

p(X,y) = p(x)p(y),
p(y[X) = p(y),

VIX+y|=V[X+V]y.

The definitions in this paragraph were given for bivariate distributions, but are easily generalized to the

multivariate case.

3.2.2 Monte Carlo estimators

Equipped with the necessary terms and definitions from probability, we can formulate Monte Carlo estima-

tors and analyze their properties.
3.2.2.1 A basic Monte Carlo estimator

Suppose we want to compute the following integral:

| = f(x)dx,
Ox

with x a possibly multi-dimensional variable with domady. Suppose we also have a pufx) (p(x) > 0
for x € Q) according to which we can draw samples UsingN independent samples, the integralan

now be estimated as

4

~—

jg?. (3.1)

<I>N - i= p(Xi)

Zl -
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The contribution of a samplgy(x;) (see§3.1.2), is the integrand divided by the pdf, both evaluated in the
sample point. This is the basi-sampleMonte Carlo estimatousing importance sampling with a pdf
p(x). Itis easy to show that the expected valugl )n] equals the desired integral

The variance of the estimator (3.1) is given by

o= ([ 5 -1).

The smaller the variance, the higher the probability that the estimate will lie close to its expected value.

3.2.2.2 Estimator properties

Many other estimators for integrals can be defined. This section defines some useful properties of general

estimators. For an estimatdry of a quantityl, the following properties can be defined:

Error

Error({I)n) =1 = (I)n.

Unbiasedness An estimator(l )y of a quantityl is called unbiased if

YNCE[(n] =1.

Bias An estimator is biased if its expected value differs franThe bias of an estimator is

BION] =T —E[(IN] -

Consistency An estimator is consistent if its bias vanishes with an increasing number of samples:

iim B[(1)x] = 0.

N—co

Any unbiased estimator is of course also consistent. The advantage of consistent estimators is that the
expected error can be made arbitrarily small, just by taking more samples. An additional advantage of
unbiased estimators is that the error can be estimated easily, because the variance (and thus the standard
deviation) can also be estimated from the samples, even for a moderate number of samples [55]. Estimating
the error for biased (consistent) estimators is much harder and is usually only performed for the asymptotic
case. However, this does not justify abandoning biased methods altogether. A small bias may outweigh the
increased variance of an unbiased estimator.

In later chapters we will show that the introduction of some bias into the estimators can significantly

improve the quality of the images.
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Efficiency The efficiency of an estimator indicates the actual time it takes to compute an estimate to a
certain precision. The efficiency of an estimator combines the variance of an estimator with the time it

takes to compute the estimate. Ogt1)) be the computation time, then the efficiency is given by

eff(l) =

T)-VIH
3.2.3 Sampling random variables

To perform Monte Carlo integration on a computer, random variables must be sampled. Most mathematical
libraries provide functions to sample uniform random variables over the unit inteiSaveral techniques
exist to sample variables from other distributions using only uniform random variables. These techniques

are outlined below.
3.2.3.1 Transformation of variables

General transformation of random variables Suppose a certain random variak(g;, ..., xx) with pdf
px(X) is transformed int@(zy, . . ., Z) using a one-to-one functian= g(x). What is the resulting distribution
of 2?

The relation betweempy(x) and p,(z) is given by the Jacobian of the transformatmrsimilar to the

change of variables in integration:

with the Jacobian defined as

oxq 9%
z 0xg 0%
07 07
For a one-dimensional variable, this is simply
_ X _dg'2
pe(2) = & Px(X) = == Pulg ().

The Jacobian must be accounted for whenever a change of random variables occurs.

Sampling from a target distribution Transformation can also be used for sampling a target distribu-
tion. The problem is to find a transformatiar= g(x) with x uniformly distributed ovef0, 1, so thatz is
distributed with a target pdf,(z)

Sincex is uniform, px(x) = 1. The transformation of pdfs is:

ir= -

1n fact, these functions do not produce real random numbers, but deterministic, pseudo-random numbers that have properties
similar to real random numbers. These numbers can be used as if it were real random numbers.




CHAPTER 3. MONTE CARLO INTEGRATION 26

A transformatiorg must be found that makes this equation true, which involves solving a partial differential
equation. For the one-dimensional case, it is simpler and boils down to the inverse cdf technique:
] (grl(z))‘ _ ‘ dg *(2)
z dz
z
=>x=g12= / p.(Z)dZ =P(2)

Pz(2) =

=z=P1(x).

Since it is usually easier to invert a one-dimensional cdf, one can also use marginal distributions to convert
a multi-dimensional sampling into a sequence of 1D sampling procedures.
In Monte Carlo rendering, this is the most common technique for sampling from specific distributions,

such as BRDF or EDF sampling.
3.2.3.2 Rejection sampling

If the transformation technique is too difficult, one can often use rejection sampling. Consider, for example,
a one-dimensional pdb(z) over a finite domain. A sampleis chosen uniformly over the domain, but
additionally a trial value is sampled uniformly over the range pfz). If the point(zt) lies under the
function p(z) the sample is accepted, otherwise a new pair is generated and tested.

The advantage of rejection sampling is that arbitrary distributions can be sampled. The efficiency of the

sampler, however, can be quite low if many trials are rejected.
3.2.3.3 Metropolis sampling ¥ (RT)? algorithm)

The M(RT)? algorithm is an advanced sampling technique that can sample any density function in any

number of dimensions. The algorithm generates samples by mutating a previous sample. An acceptance
test determines if the new tentative sample is kept or if the previous sample is used again. Perfect sampling
of the pdfis only reached asymptotically, and samples can be strongly correlated, depending on the mutation

strategies used. Details can be found in [73, 55].
3.2.3.4 Custom methods

Several custom methods are available for sampling random variables with specific distributions. For exam-
ple the maximum ok uniform random variables is a random variableith cdf: ZX. See [55] for a detailed

overview.

3.3 Variance reduction

A Monte Carlo estimator can be made arbitrarily accurate by simply increasing the number of samples.

However more samples require more computation time, and a lot of research has gone into techniques to
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increase the accuracy of estimators without using more samples. These variance reduction techniques will

be outlined next, with a focus on those used further in the text.

3.3.1 Importance sampling

The basic Monte Carlo estimator (3.1) samples according to a certap(pdfimportance sampling refers

to the effect that this pdf has on the variance of the estimator. It can be shown that the optimal pdf is given

by
f(x)
P() = Jo T 0

In other words, the best choice is a pdf that is proportional to the integrand. This pdf would result in a zero-
variance estimator. However, the normalization factor, that ensures the pdf integrates to 1, is the integral of
f(x), which is exactly the (unknown) quantity to be computed.

In practice a pdf that closely matches the integrand (f.ex)/p(x) as constant as possible) will still
significantly reduce the variance of the estimator. Owen [77] presents guidelines for choosing a pdf that
ensures effective importance sampling.

In Monte Carlo rendering, importance sampling is one of the most frequently used variance reduction
techniques. It can be especially effective when the integrand contains narrow peaks, for instance, when

sampling directions in the presence of highly specular materials.

3.3.2 Multiple importance sampling

Importance sampling uses a single pdf to generate samples, but sometimes it may be difficult to construct
a single pdf that works well in all circumstances. A typical example in rendering is the computation of the
direct lighting of a surface. For a diffuse surface, the direct light is best computed by sampling points on a
light source explicitly, while for a specular surface it is better to sample a reflected ray and see if it hits a
light source. One could make this distinction based on surface properties, but multiple importance sampling
provides a method for weighting the different sampling techniques in a way that preserves their strengths.
Multiple importance sampling was introduced by Veach. More information can be found in [116]

and [114].
3.3.2.1 Multi-sample estimator

Recall the integral to be computed:

I:/Qf(x)dx.

Supposen pdfs pi(x) are used to estimate and thatN; samples are allocated to each gif One could
computen estimates, one for each pdf, and weight the results, for instance based on the estimated vari-

ance of each individual estimate. However, it is possible to formulate combined estimators that assign an
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appropriate weight t@ach individual sampleresulting in a better combination. Such an estimator, the

multi-sample estimator, is given by

f(x.j)
pi(x,j)

with x; j sampled according tp;(x). Each sample is weighted witli (x ;) wherew;(x) is a weighting

n 1 N,
(Hwmis = 'Zlﬁ 1Wi (Xi,j)
i=1"" j=

function specific for pdf.

This estimator is unbiased when the following constraintsi@r) are fulfilled [114, p. 260]:

(1) wxeQ: iwi(x) =1

(2) ¥xeQ,pi(x) =0:wi(x)=0. (3.2)

The first constraint takes into account that several pdfs can generate a certainsaimpkstal weight of
a sample over all pdfs ik, so that the contribution ofis accounted for exactly once.

The second constraint is only important when some pdfs do not sample the complete @oméien
a sample cannot be generated by a certain pdk( = 0), the weighting functionv; will never be evaluated
for this sample (as it is never generated with and thus should evaluate to zero. Otherwise, the total
contribution of this sample would be to low.

Note that, contrary to ‘single’ importance sampling, it is not necessary that each pdf covers the complete
domainQ. Itis sufficient that for eack € Q, at least one pdfis able to generate it. This allows for interesting
combinations of pdfs that can be tuned to certain parts of the domain [P2].

Any set of weighting functions that conforms to (3.2) makes a valid estimator. For example con-
stant weightsy; over the whole domai® result in a weighted combination of separate estimatgis=
Yiwi(l)i. Separation of the domain can be achieved by setting wathone for a specific sub-domain of
Q. Of course, weights that minimize the variance of the combined estimator, are preferred. Veach proposes

several weighting heuristics, which are discussed below.

The balance heuristic The balance heuristic is given by the following weighting functions:

Wi(x) = Ni pi (X)

- . 3.3)
N
k; k Pk (X)

Both the number of samplég and the pdf evaluation have an effect on the weight of a sample:

e Pdf: When a sample; j is generated that has a very small pdf evaluation (an ‘improbable’ sample)
but a larger integrand evaluatidii; j), the ratiof (x; j)/pi(xi,j) can become very large. In an un-
weighted estimator, such samples increase the variance of the estimate enormously, and the pdf itself

is deemed bad.
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In multiple importance sampling, however, such bad samples can be compensated by the weight: if
there is another sampling technigpe(x) that has a much larger pdf evaluationXr, the sum in
the denominator ofvi(x; ;) becomes large compared to the numerator, and the small weight of the

sample compensates the large (unweighted) contributigr) /pi(Xi.j)-

To put it another way, samples that are easily generated with a certain technique (large pdf evaluation),

will also get a larger portion of the weight.

e Number of samples:The argument for the number of samples in the weighting functions is similar:
techniques for which more samples are used (lalggrwill get a larger weight for their samples,

because overall the variance of their estimator is lower (due to the larger number of samples).

The balance heuristic is a good default choice when no extra knowledge about the integrand or estima-
tors is known. Veach shows that the improvement of other weighting heuristics with respect to the balance
heuristic is limited [114, p. 264]. L&l )ga. be the balance heuristic estimator ghdys any valid multiple

importance sampling estimator, then it can be shown that

IV [(Deac] =V [(wmis] | < <mi§i N zilNi) 12, (3.4)

This means the variance decrease that can be obtained with the (unknown) optimal weighting heuristic
instead of the balance heuristic, is limited by the rightmost term.

However, other heuristics can be useful in low variance cases where one of the sampling techniques is
particularly good in a certain part of the domain. Most practical is the power heuristic discussed next. Other
heuristics, such as the cutoff or the maximum heuristic, are only of interest theoretically. Details are given

in [114].

Power heuristic The power heuristic uses the following weights:

(Nipi(x))P

Wi(X) =
z Nk B
y 1( k k(X))

An exponenf3 = 2 works well in practice and is most common. The exponentiation increases the weight of

a sample for those techniques that have a high probability of generating this sample, i.ep; (xh&ge.
3.3.2.2 One-sample estimator

The multi-sample estimator allocates a humber of saniglés each of the sampling techniques. A one-
sample estimator requires choosing a single sample from one of the sampling techniques. A prgpability

is assigned to each of the techniques, and one of them is chosen randomly.
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The balance heuristic for the one-sample estimator becomes:

Wi (X) = nyi P

> WPk(X)

K=1

Veach shows that the balance heuristic is optimal for the one-sample case; no other heuristics are necessary.
3.3.2.3 Discussion

Multiple importance sampling provides a great tool for constructing robust Monte Carlo estimators. Itis no
longer necessary to construct the one perfect pdf that matches the integrand over the whole domain. Specific
pdfs can be designed for difficult cases, and the weighting ensures a good combination of the individual
samples.

Of course, multiple importance sampling does not come for free. Computing the weight) for a
single sample requires the evaluatioradifn pdfs pk(x; ;) and not only the one that generated the sample.
This makes the evaluation of a sample more expensive but this is compensated by the lower variance of the
combined estimator.

The foremost important application of multiple importance sampling in rendering is bidirectional path
tracing §3.4.3), but it can also be applied to several problems in stochastic ray tr§8idgl]. In chapter 6

we will extend multiple importance sampling for use in multi-pass methods.

3.3.3 Sample placement

Much effort in Monte Carlo research was invested into careful sample placement to minimize the variance.
Uniform random sampling can cause samples to clump together. The variance increases because the domain
is not covered as well as it could be. Stratified sampling and Quasi-Monte Carlo (QMC) methods try to

remedy this problem.
3.3.3.1 Stratified sampling

Stratified sampling divides the domain into a number of different, non-overlapping strata. Each stratum
receives a predetermined fraction of the number of samples, for example one sample per stratum. This form
of sampling ensures a better coverage of the sampling domain since all strata are sampled and clumping is
reduced.

The variance and convergence properties of stratified sampling have been studied in detail in the litera-

ture. Some interesting points to note are the following:

e Stratified sampling can never be worse than uniform random sampling, which motivates its use when-

ever possible.



CHAPTER 3. MONTE CARLO INTEGRATION 31

e |tis better to increase the number of strata than the number of samples per stratum. In practice, this

means using one sample per stratum.

e The variance can decrease as the square of the number of strataNUJsangples and alsi strata,
a convergence rate df/N? is much faster than the normafN rate. While this is true for smooth
integrands, high variation within strata —discontinuities for instance— limit the benefits of stratified

sampling.

A problem with stratified sampling is the division into strata.dAlimensional domain divided into
equal strata, gives a minimum 2 strata (one split in each dimension). For high-dimensional domains this
results in many strata, liming the choice of the sample count. Several solutions exist that try to remedy this

problem, for example, orthogonal array sampling [76] and also Quasi Monte Carlo methods.
3.3.3.2 Quasi-Monte Carlo methods

Quasi-Monte Carlo (QMC) methods go even further than stratified sampling and abandon the randomness of
the sampling completety Special, deterministic number sequences are used to generate the samples. The
sequences try to distribute the samples as evenly and well distributed as possible, but without introducing
too much regular structure in them (regular structure introduces aliasing).

A large body of research discusses various sequences and their convergence properties on a humber of
integration problems. Depending on the smoothness of the integrand, a significantly faster convergence rate
can be obtained. In computer graphics, however, discontinuities limit the convergence speedup. Still QMC
sampling provides a convenient way to at least stratify the samples, without the need for explicit strata.

Examples of frequently used QMC sequences are the Halton sequence, the Niederreiter sequence, and
(t,m,s)-nets. More information on the use of QMC integration in computer graphics can be found in [92,

57, 109, 5].
3.3.4 Russian roulette and splitting

Russian roulette and splitting are techniques to increase the efficiency of estimators and are closely related
to transport problems.

Light transport can be computed by averaging a number of random walks. To increase efficiency,
many random walks should be allocated to important regions in the scene or to important parts of the
light transport. Russian roulette is used to terminate unimportant random walks, while splitting is used to
increase the number of random walks in important regions. The concepts will be explained in a standard

integral setting.

2As said before, random numbers generated with computer are only pseudo-random and thus also deterministic. The difference is
that the pseudo-random numbers have similar properties as real random numbers, whereas QMC sequences do not.
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Given the desired integrdl= [ f(x)dx and some estimatdit), Russian roulette introduces an addi-
tional random process that determines whether the estimator is evaluated. Gaazeptancerobability

Py and a uniform random numbére [0, 1], the estimate is given by

n _{<|>/Prr if £ < Py

"o otherwise

The resulting estimatofl ), is unbiased. It has a higher variance than the original estin{iitpbut the

time to compute it is lower (under the assumption fais faster to compute thafh)). This can be useful

if the estimator is just a part of the total computation, for example when evaluating a random walk or a sum
of terms:

l=Il1+1lr+13+... (35)

If Russian roulette is applied to the individual terms with an acceptance probability that matches the (esti-
mated) contribution of the term 19 the total efficiency ofl) can be increased.

Russian roulette is frequently, if not always, used in transport problems to terminate random walks. It
ensures that more work is spent in shorter and more important walks (or paths).

Splitting is a similar technique. It uses more samples to estimate important terms in the sum (3.5)

instead of using fewer samples for unimportant terms:

1 N
(Ij)spiit = 5 Z<'j>i :
N.£
where the(l;); are independent estimates for In a random walk context, this corresponds to splitting an

important particlej into N scattered particles and averaging all the contributions.
3.3.5 The use of expected values

A very straightforward but effective variance reduction technique is the use of expected values to reduce

the dimensionality of the integral. Suppose we want to compute the following integral:

I:/ / f1(x,y)dx dy.
Qy Jox
An estimator foi is given by
N
f1(%, i)
) = . 3.6
<> i= p(xlvyl) ( )

Suppose also that the functidg(y) and the marginal density(y) are known:

fZ(y): a fl(va)dxa

miy) = [ pixy)ax.

By integration, the dependence wis removed and the integration problem is reduced to an integral over

Qy. An estimator foll using these functions is given by:

_ < falw)
i£ m(y;) -

() (3.7
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This estimator has a lower variance than estimator (3.6). The dependexisesustituted by the expected
value and the dimensionality of the integration problem is reduced.

This reduction in variance is logical, as a part of the integral was computed analytically. However, when
m(y) is not equal to the marginal density, both integrals are computed with unrelated pdfs and nothing can
be said about the respective estimator variance. In chapter 6, an example will demonstrate such a case where
partial analytical integration does not reduce the variance. A solution to this problem is proposed using a

combination of multiple importance sampling and expected values.

3.3.6 Other techniques

There are several other techniques for variance reduction, such as control variates, antithetic variables and
regression methods. While they did not yet find many uses in computer graphics, they still hold good

potential for variance reduction. More information can be found in previously cited references.

3.4 Monte Carlo rendering

Monte Carlo techniques excel in high-dimensional integration problems. Over the years they have become
popular for solving integral equations. Typically these methods tawdom walkdy recursively sampling
the transport equations.
Stochastic sampling in rendering surfaced with the work of Cook [24], ®am Wold [25], and Lee et
al. [68]. The first full Monte Carlo solution of the rendering equation was proposed by Kajiya [54], spurring
a large body of Monte Carlo rendering research.
In this section we will review several important Monte Carlo rendering methods: stochastic ray trac-
ing (§3.4.1), particle tracing§@.4.2) and bidirectional path tracing3(4.3). These methods form the basis
of the global illumination methods presented in this dissertation.
The discussion of the algorithms is kept concise, because they are treated in great detail in many other

graphics textbooks and dissertations.

3.4.1 Stochastic ray tracing

Stochastic ray tracing is an image-space algorithm that tregegpathdrom the eye or camera into the
scene, as shown schematically in figure 3.1.
Stochastic ray tracing is, in fact, a straightforward Monte Carlo estimation of the measurement and
radiance transport equation. First, the measurement equation (2.3) is estimatasysangples per pixel:
-t %w&x&” - ooEJ))LEi()xS)(iT o) costp’
0= P(Xy", wy')

The starting vertexo (the camera position) and a sampled directignthrough the pixel determine the




CHAPTER 3. MONTE CARLO INTEGRATION 34

Figure 3.1: Stochastic ray tracing constructs paths starting from the eye. For each vertex scattered rays are traced to
estimate incoming radiance.

starting ray of an eye path. The incoming radiabci the estimator is unknown. It is equal to the outgoing
radiance at the nearest intersectk@nwhich is determined by tracing a ray in the directiaf The outgoing
radiancel (X1 — ), is then estimated by substitution with the radiance transport equation (2.1). The self-
emitted radiancée(x1 — wx) in X1 can be evaluated directly, but the reflected and refracted radignce,

requires another Monte Carlo estimation (ushigscattered samples):

(Li(Xo <= ))) = Le(X1 — wo) + (Lr(X1 — wp)),

with
1 YL W) f(x1, wo — i) cosdll)
NS ()

The unknown radianck; (x; < wy) is estimated in the same way, by tracing a raxi@nd sampling the

(Le(x1 — wp)) =

incoming radiance at this hit point (see figure 3.1).

To end the recursive process a maximum path length can be chosen or Russian roulette can be used. A
maximum path length ignores light from longer paths, and thus is biased. This bias, however, is small for a
sufficiently large maximum. For Russian roulette, an absorption probaBilidetermines whether a path
is prolonged and its contribution is adjusted accordingly. This is unbiased.

While the basic algorithm is extremely simple, several common variance reduction techniques can dras-

tically reduce the rendering time:

e An important optimization is next event estimation, which corresponds to the direct sampling of
the light sources. Instead of waiting for paths to hit the typically small light sources, path vertices
are sampled on the light sources explicitly. Both sampling techniques, direction sampling and light

source sampling, can be combined using multiple importance samp8ri) ).

e The splitting factom (or spawning factor) determines the number of samples that are used in each

recursion level.Np determines the number of samples per pixgl.» = determine the number of
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the path tracingalgorithm. Path tracing with Russian roulette allocates more work to shorter, more
important paths and it is a good choice lacking any extra information about the scene. Bolin and

Meyer analyzed optimal splitting factors for stochastic ray tracing in [12].

e Directionsuy are chosen according to a pdfwx). This pdf is usually taken proportional to the
BSDF (times the cosine if possible). This is especially important for specular materials, that have a

very peaked BSDF.

If extra information about the incoming radiance is available —for example through an object-space
radiance solution, computed on the fly or in a preprocessing step—, it can be taken into account into

the importance sampling for further variance reduction [29, 65, 46].

Figure 3.2 (page 36) shows a reference image of an example scene that is used to compare the different
Monte Carlo rendering algorithms. The scene contains two light sources. The one on the right is directed
towards the specular glass sphere in the middle. The other light is directed towards the white diffuse panel
on the left. The materials of the walls and floor all have diffuse and glossy components. This scene exhibits
many different illumination features such as caustics, indirect diffuse illumination, glossy reflection, and
specular refraction. This image is also shown in figure 3.6 (page 37) for direct comparison with the images
rendered with the different Monte Carlo algorithms.

Figure 3.3 shows a path tracing solution of the example scene. The path tracing image was computed
using 25 samples per pixetLOmin.). This image reveals some interesting characteristics of stochastic ray

tracing:

e Glossy and specular scattering from the eye are handled quite well. The light refracted through the
sphere, as well as the glossy highlights from the panel and the right light source, are adequately

sampled by eye paths.

¢ Important indirect diffuse illumination shows a high level of noise, most apparent in the region above

the white panel and in the shadow of the sphere on the left.

e The light source on the right and the white panel cause caustic effects on the floor. Eye paths are not
very well suited to compute such effects: when an eye ray hits the floor, only a very small part of the
hemisphere contributes to the caustic: Reflected rays must be shot towards the glass sphere in such a
way that the exiting refracted ray hits the light source or the panel. The smaller the light source, the

worse this sampling problem becomes.

The caustic effects cause a high variance in the estimator, which causes them to appear very noisy in

the image.
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Specular refraction through the glass sphere——

Glossy highlight (of the rightmost light sourcey—

Glossy reflections of the white panel

Diffuse white panel, lit by the light source below,
causing strong indirect illumination

Important indirect illumination (and no direct
illumination)

Caustics: light (from the rightmost light source) |ndirect caustic, due to
focused by the glass sphere onto the floor the bright illumination

and wall on the white panel

—e Glossy reflection of the caustic on the floor

Figure 3.2: An example scene with many different illumination features is used to compare the different Monte Carlo
rendering algorithms. This reference solution was rendered with bidirectional path tracing using 2048 bidirectional
paths per pixel (about 20 hours of computation time).
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Figure 3.3: An example scene rendered with path tracFigure 3.4: The same scene rendered with light ray trac-
ing (25 samples/pixel). The scene exhibits many differering (25 samples/pixel).

illumination features such as caustics, indirect illumina-

tion, glossy reflection, and specular refraction

Figure 3.5: The scene rendered with bidirectional pathFigure 3.6: The reference solution, rendered with bidi-
tracing (16 samples/pixel, same computation time aectional path tracing (2048 samples/pixel).
above).
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Tracing light paths Particle representation

Figure 3.7: Particle tracing generates a number of light paths (left). All the vertices of the light paths form a set of
particles that approximate the incoming radiance on surfaces in the scene (right).

3.4.2 Particle tracing

Particle tracing is similar to path tracing, but the paths are constructed starting from the light sources. Other
names used for particle tracing are photon tragipoton tracking and light ray tracing.

The tracing of the particles is independent of the final measurements computed with these particles.
Therefore, it is convenient to explicitly split the transport and measurement (or reconstruction) phase. Con-
ceptually this corresponds to tracing all the light paths first and collecting all the path vertices as a set of
particles, and to computing the measurements using the set of recorded particles afterwards. This idea is

shown schematically in figure 3.7.
3.4.2.1 Tracing the particles

A particle ®(x, w, @) consists of a positiox, a directionw and an associated weiglpt the ‘energy’ or
color of the particle. In our treatment of particle tracing we will consider incoming particles that arrive at
surfaces and thus approximate the incoming radiance. In [114, p.121] an outgoing radiance approximation
using particles leaving a surface was given, which we adapted for incoming particles.

Particles are constructed by tracing a number of light paths. Each vertex in the path forms a particle (this
corresponds to a collision estimator random walk, see e.g., [103]). The following procedure is repeated for

N light paths (see also figure 3.7):

e First, a pointxg on a light source and an outgoing directionare sampled. Then, a ray is traced and
the nearest intersection forms the positigrof the first particleds (x1, w1, @) with weight:

_ 1 Le(Xo — wn)cosbo
~ N p(xo)p(wrxo)

e An absorption test determines whether the light path is extended. Russian roulette is applied using an

acceptance probability, .

3Although the name ‘photon’ is often used in the context of particle tracing, a real physical photon, with a single wavelength and a
fixed energy, is quite different. However, within the simplified mathematical framework of the rendering equation, it is often intuitive
to think about particles as photons.
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e When the light path is extended, a new directigris sampled and a ray is tracedds The resulting

particle(xz, ty, @) has a weight

B 1 fs(X1,02 — wy)COSHy
=% Prr p(0~)2|¢1) ’

where p(wy|®1) is the conditional probability for sampling the new direction given the previous

particle.
e The particle scattering is repeated until the particle is absorbed. Then a new light path is started.

Theresultis a set of particl&s (x;, wy, @) that approximates the equilibrium incoming radiance distribution
Li. Note that the number of particledy, can be larger than the number of light patNssince more than
one particle per path can be added to the set.

A single patrticle represents a differential flgpd, «y dA incident to the surface ix. Any measurement
I, defined by an outgoing importance functid(x — w) can be estimated using the set of particles as
follows:

N
(= Ni;(ﬂwe(xi — ). (3.8)

This is an unbiased estimator figrwhich can be proven using the importance transport equation [114, 80].

For example, whel\; is set tol for a certain surface and the upper hemisphere above the surface,
equation (3.8) reduces to the sum of the particle weights that hit the surface, which estimates the incident

flux on that surface.
3.4.2.2 Analog simulation

In the Monte Carlo literature, an analog simulation is defined as a simulation that mimics the underlying
transport rules [103]. For light transport, this corresponds to a simulation of the particle model of light [79]:
A light source emits a number of particles (or ‘photons’) that all have the same power. When reaching a

surface, a particle can be scattered or absorbed, but at any time a photon keeps the same power.

Such an analog simulation is useful, because a low variance in the particle powers (all powers are equal)

will result in a lower variance of the measurement estimates (3.8).

An analog particle tracing algorithm must choose its pdfs in the following way:

e Particle birth: When the starting poing is chosen according to the emittance of the light sources,

and the directiony; is chosen with a pdf proportional to the EDF times cosine, the particle weight is:

1 Le(Xo — 1) c0sBg P

TN _Be(xo)  Le(xo—wi)cosBy ~ N
Jas Be(X) dx f02n Le(x—w)d 0

Here we have used the definition of the total self-emitted dhdx= [,_Be(X) dx and the definition of

the self-emitted radiositBe.
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e Particle scattering: The acceptance probability for Russian roulette is set equal to the local albedo,
and the pdf for direction sampling is taken proportional to the BSDF times cosine. This results in the

following weight:
1 fs(Xi—1,00—0_1)cOSBi_1

@ = @1e p(wx[Pi—1)
Ot 1 fs(Xi_1,045—0y_1)COSH; 1
1 P wig) TS —wi_y)cosh_y
P(Xi—1,%%-1)
= (971

Note that it is not always possible to perform a perfect analog simulation, because exact sampling according
to the required pdfs may not be possible. But trying to keep the particle powers as homogeneous as possible,

is still beneficial for the estimates.
3.4.2.3 Measurements and reconstruction

Many existing global illumination algorithms use particle tracing as their method for light transport calcu-
lations. The actual measurements can be computed from the particle representation directly:

N

(= _thn We(Xi — 03).

=
This formalism clearly separates the light transport from the measurement itself. Algorithms using particle
tracing can now be distinguished by their response fundgnNote that in their implementation, many
algorithms do not need to store the individual particles.

Examples of algorithms using particle tracing are several Monte Carlo radiosity algorithms [79, 111],
density estimation [93, 122], photon maps [47, 50], caustic map computations [23], and light ray tracing
with direct estimation of the pixel fluxes [28]. All but the last method are object-space methods, and will
be explained in more detail further on.

Light ray tracing with direct estimation of the pixel fluxes could be called the adjoint method of path
tracing. While path tracing is directly derived from the radiance transport equation, light ray tracing starts
at the light sources and then the importance transport equation is applied recursively. Each path vertex is
explicitly connected with the camera to estimate the pixel flux.

While both path tracing and light ray tracing are unbiased, they construct paths differently and thus
define a different probability density on path space. This results in a different variance or noise level for
the illumination features in a scene. Figure 3.4 shows a light ray tracing solution of the example scene.

Compared to the path tracing solution (figure 3.3), the following differences can be noted:

e Glossy reflections are somewhat worse, and the specular glass sphere even turns up completely black.
Specular sampling is best handled by sampling directions according to the highly peaked BSDF. In

this case, however, light paths that are about to exit the sphere are explicitly connected td the eye

“Note that a specular refracted direction will also be sampled, but the ray leaving the glass sphere will never hit our pinhole camera.
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Figure 3.8: A bidirectional patlx can be constructed by connecting eye and light sub-paths of different lengths.

The resulting direction will almost never lead to a significant BSDF evaluation. This problem is

similar to the caustics problem in stochastic ray trading

e Caustics are handled very well by light paths, because light paths hitting a specular object are ex-

tended by sampling a scattered ray according to a very sharply peaked BSDF.

e For this scene, indirect diffuse light is handled better compared to stochastic ray tracing. The bright
white panel contributes significantly to the indirect illumination. Many light paths will hit this panel
and will be scattered into the scene, contributing to the indirect illumination. In stochastic ray tracing,
however, the white panel only contributes when an eye-path hits it. This does not happen very often,

resulting in a higher noise level.

3.4.3 Bidirectional path tracing

As the name suggests bidirectional path tracing constructs paths in two directions: from the lights and
from the camera. It was proposed by Lafortune [62, 63] and later independently by Veach [115]. Veach
recognized that, when using the path integral formulat§@n9), the different path sampling techniques in
bidirectional path tracing (BPT) can be weighted using multiple importance sampling [116]. The resulting
weights preserve the advantages of the sampling techniques, making BPT superior to path tracing or light

ray tracing alone for many scenes.
3.4.3.1 Path construction

Bidirectional paths A bidirectional path is formed by connecting an eye and a light sub-path. Given an
eye sub-path of lengthand a light sub-path of lengththe bidirectional path will be written as;.

The contribution of a path is given by the measurement contribution funétion(equation 2.8). The
pdf evaluation for a path is the accumulated pdf of the eye sub-path multiplied by the pdf of the light sub-
path. The connection itself is deterministic and does not influence the pdf. The path integral formulation

requires that all pdfs are specified with respect to the area product measuy2 @3e€onsider for example

5In fact it is even worse, because direct hits on a area light source (as used in the example scene) do contribute to the caustics, but a
direct hit on the aperture of our pinhole camera is not possible. Of course, if point light sources were used, none of the caustics would
show up in stochastic ray tracing either.
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Figure 3.9: An efficient sampling of bidirectional paths combines all vertices of an eye sub-path with all the vertices
of a light sub-path.

a path of length four, constructed by connecting an eye subgpathwith a light sub-patHgli: X2 =
epe1l1lo (Figure 3.8 (c)). The contribution and pdf of this path is given by

f(iz,z) = Le(|0 — |1)G(|0, |1) fs(|0 — 11— el) G(|1,€1)

fs(lp — €1 — ep)G(er,e0)We(€0 — €1) ,

p(x22) = p(lo) p(l1[lo) P(ev) P(erleo) -

Note that for the connection, the evaluation of the geometry fagthr, e;) requires a visibility test.

The same path could also be formed by connecting eye and light sub-paths of other [EngtRs3,

X31, andxXso. So a path of length 4 can be sampled in 5 different ways (Figure 3.8). In general there are
n+ 1 different bidirectional sampling techniques to sample a gaibf lengthn.

The measurement contributidrfor a path is always the same, no matter how the path is sampled. The
pdf on the other hand, is different for each sampling technjmyeAs we have seen before when comparing
path tracing and light ray tracing, each sampling technique will be able to handle certain illumination
features well, while others will give rise to a high noise level. Combination of the different techniques with

multiple importance sampling will preserve the strengths of the different sampling techniqug3.4s8e).

Efficient sampling of bidirectional paths While independent eye and light sub-paths could be sampled
for each bidirectional path, it is possible and much more efficient to construct several bidirectional paths
from a single pair of eye and light sub-paths.

This efficient construction of paths is shown in figure 3.9. A light path and an eye path are traced. Each
eye path vertex is connected with each light path vertex, resulting in several bidirectional paths.

The combination of an eye and a light sub-path to form a bidirectional pathas to handle a few

special cases:
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e s=0: The eye sub-path is empty. Such a path will only contribute if the light sub-path hits the camera

directly. For a pinhole camera, such paths will never occur and the associated pdf evalOates to
e s=1: Such paths are particle tracing paths that are explicitly connected to the camera.
e t =1: These are path tracing paths directly connected to a point sampled on a light source.
e t =0: An eye path that hits a light source directly.

These special cases show that bidirectional path tracing includes all the paths that are generated with path

tracing and particle tracing.
3.4.3.2 Multiple importance sampling

The previous section showed that a single pattan be constructed using different sampling techniques
pst. Therefore, the contribution of a path must be weighted using multiple importance sampliniy. For
pairs of eye and light paths, the bidirectional estimator is given by
Nst X )
1,st
W, 3.9
SZOZOZL st |st th|st) ( )
whereNs; is the number of samples used for the specific sampling techsjgue

With the multi-sample model, the weights for a pathsing the power heuristic are given by:

(Nstpst(i))

s+t stt—¢
2 3 (Newpal
0t

To evaluate the weighting function for a single path, an evaluation of the pdf is required for each sampling

Ws,'[ (X)

techniques,t’ that could generate the same path (wkent’ = s+t). These pdfs have many common

factors which allows an efficient evaluation scheme (cfr. [114]).
3.4.3.3 Optimizations

Several optimizations can be applied to make the BPT estimator even more efficient.

Multiple measurements Until now we considered only the estimation of a single pixel, but usually mea-
surementd; for every pixel in the image are needed. Some sampling techniques can be used to estimate
all pixelsl; at once. This is the case for light paths that are connected directly to the cgmgrihé pixel
I; is determined by the connecting edge in the path) or for light paths that would hit the camera aperture
directly (poy).

If N pairs of eye and light paths are traceer pixelfor a total of Npjx pixels, Npix x N light paths
can contribute to any of the pixels. Thus, the number of samples used for these sampling techniques is

Not = N1t = Npix x N while the number of samples for other techniquedljsit = N. The increased
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number of samples for these two sampling techniques must also be used in the weighting functions, and

will result in a larger contribution for such paths.

Direct light optimization ~This optimization concerns the sampling technigqug, the direct lighting
technique that connects an eye sub-path to a vertex on a light source. In the above description the eye
sub-path would be connected to the starting vertex of the light sub-path, which is chosen uniformly over the
light sources.

Several direct lighting techniques, however, optimize the choice of the light vertex based on the point
to be lit (the last vertex in the eye sub-path)[94]. These techniques can be combined easily with BPT by
adapting the sampling techniqypg; so that it chooses its own light vertex. This modifies the pgf,

which must be incorporated in the estimator and weighting functions.

Selective visibility tests Veach and Lafortune both proposed a technique to reduce the number of visi-
bility tests required by all the connecting path segments. Both techniques are based on Russian roulette to

determine whether the visibility test will be performed. More information can be found in [66] and [114].
3.4.3.4 Implementation

Our BPT implementation uses the power heuristic \@ith 2. We use the multiple measurements optimiza-
tion and the direct lighting optimization. Selective visibility tests are not implemented. While this could
lower the number of (highly optimized) intersection tests, our experience is that the time spent in the BSDF,
pdf, and weight evaluations, which always have to be evaluated, limits the possible gain in performance.

A maximum path length can be chosen independently for the eye paths, the light paths, and the combined
bidirectional paths. This allows us to easily perform path tracing and light ray tracing by just changing these
maxima. If not explicitly stated otherwise, all maxima are set té/hile this excludes some light transport
(i.e., longer paths) in the images, the difference to a full solution is small.

A minimum path length can also be chosen. Absorption tests using Russian roulette are only performed
when a path has already reached the minimum path length. Since short paths carry the bulk of the trans-
ported light, the extra variance caused by the Russian roulette is undesirable. The minimum de2aults to

For a typical scene, the average path length is around 4.
3.4.3.5 Results

Figure 3.5 shows the example scene rendered with bidirectional path tracingléssagnples per pixel
(same computation time as the other images). The comparison with path tracing (fig. 3.3) and light ray

tracing (fig. 3.4) shows the following interesting differences:
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e Caustics, as well as specular and glossy scattering, are sampled well. This is logical as BPT is a

superset of path and light ray tracing, and thus is able to combine their strengths.

e The indirect light is even better than in the light ray tracing image, because additional estimators

(with eye and light sub-paths longer than 1 vertex) also sample this illumination.

e One notable remaining source of noise is the highly glossy reflection of the caustic on the left. An
eye path, that samples the glossy reflection well, has problems with the caustic. A light path, on the
other hand, has trouble with the final glossy reflection towards the eye, but not with the caustic. There
are several solutions to this problem, for example, explicitly storing caustics allows eye paths to use

the stored caustic instead of having to generate it by sampling (see chapter 8).

3.4.4 Other methods

Many other Monte Carlo methods for rendering have been proposed. Most of them are variations or com-

binations of the three algorithms described above. We only want to mention the following:

e Metropolis light transport: Using the path integral formulation, Metropolis sampling can be applied
to light transport[117]. An initial path is generated using another technique, for example BPT. The
metropolis algorithm records the score for the current path and then applies a mutation to it. This
mutation is accepted or rejected based on the principle of detailed balance. If accepted, the current

path is replaced by the mutation.

The advantage of Metropolis sampling is that paths are sampled proportionally to the measurement
contribution function, the actual contribution of a path to the image. This results in perfect importance
sampling, but the subsequent paths can be highly correlated depending on the mutation strategies.
Metropolis light transport performs well for difficult lighting configurations, using carefully designed
mutation strategies. Finding good mutation strategies is the most difficult part of metropolis light

transport.

e Monte Carlo radiosity The methods described above are image-space algorithms. Of course, Monte
Carlo technigues can also be applied to object-space algorithms, such as the radiosity method. Monte

Carlo radiosity methods turn out to be very efficient and successful, as shown in [5].

3.5 Conclusion

Monte Carlo methods are widely used for tackling transport problems and their integral equations. They
are frequently used and will continue to be used in physically based rendering algorithms such as described

in this dissertation. This chapter summarized the Monte Carlo techniques used in the remainder of the
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text. Some important Monte Carlo rendering algorithms —stochastic ray tracing, particle tracing, and

bidirectional path tracing— were explained. These methods form the basis of the following chapters.



4  Multi-pass methods

This chapter introduces multi-pass methods. Several common object-space and image-space components
of multi-pass methods are discussed, and a brief overview is given of multi-pass methods presented in the
literature. A convenient regular expression notation is used to describe all the light transport that is covered
by the separate components and the existing methods. The components and regular expression notation

discussed in this chapter will be used frequently in subsequent chapters.

4.1 Introduction

Many (single-pass) global illumination algorithms have been proposed, ranging from finite element radios-
ity methods to stochastic ray tracing. All these methods have their specific strengths and weaknesses. A
very successful approach to develop robust global illumination systems is to combine different algorithms
into a two-pass or multi-pass method. A good combination of algorithms tries to preserve their respective
strengths and diminish or even remove their weaknesses.

Technically, a multi-pass rendering method divides the computation of the light transport in a scene into
two or more different passes. Each of these passes uses a different algorithm that tackles some part of the
light transport. Typically one or more object-space passes compute an approximation to the radiance in the
scene, that is used afterwards by an image-space pass.

Such a multi-pass approach introduces the concept of separation in the light transport calculations:
each pass is assigned a specific part of the light transport. This separation of light transport over different

algorithms must be done very carefully:

¢ No light transport may be accounted for more than once, otherwise the resulting solution will be

incorrect (too bright).

e For a full global illumination solution, all light transport must be covered by at least one of the

algorithms. No light transport may be missing in the final image.

In short, these requirements state that all possible light paths must be covered exactly once by the combina-
tion of algorithms, in order to obtain a correct, full global illumination solution.

In this chapter a simple framework for characterizing multi-pass methods is presented. It is based
on standard regular expressions to describe the separated parts of the light trj@spprtsing the
regular expression notation, we will analyze several common object-space and image-space components of
current multi-pass method§4.3). The chapter ends with a brief overview of the literature on multi-pass

methods §4.4).

a7
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E eye or camera vertex

L light source vertex

D,,D: Diffuse reflection/transmission
G, G, Glossy reflection/transmission
S:, St Specular reflection/transmission
Sr.>St,, | Perfectly specular reflection/transmissipn
‘or’ operator

+ additiont

D D,|D;

G G/|G

S S,IS.

X DIG|S

X* zero or more occurrences f
X+ one or more occurrences Xf
Xk exactlyk occurrences ok
X0k 0to k occurrences oX

Table 4.1: Regular expression symbols for path classification

As we will see, several different object-space passes have been used in multi-pass configurations, but
the (final) image-space passes are practically always simple variations of stochastic ray tracing. In the next
chapter we will present a new technique for ray tracing based passes, that derives the path evaluation directly
from regular expressions. This offers an improved flexibility in separating the light transport and tuning the
multi-pass configuration (MPC). Most importantly, it will allow us to use bidirectional path tracing as a

final image-space pass.

4.2 Regular expressions to describe light transport

This section introduces regular expressions to describe separate parts of the light transport.

In most multi-pass methods the separation of light transport is based on the type of materials that are
supported by a certain algorithm. For example, a classical radiosity algorithm can only handle diffuse
materials. Thus, if we consider all the possible light paths that are covered by such a radiosity algorithm,
thescattering componenthat are used in the path vertices will only include the diffuse component.

Regular expressions are a convenient way to classify such transport paths. The symbols in the regular
expression syntax identify the scattering components —diffuse, glossy or specular— used in the path ver-
tices. Other symbols identify the light and eye vertices. An overview of all symbols is given in table 4.1.
This notation extends the notation introduced by Heckbert [40].

All paths covered by a radiosity algorithm can now be describeldy Caustics, for example, can be
described by.STD paths, meaning that one or more specular reflections or refractions occurred before a
final diffuse scattering.

Note that the BSDF or scattering components refer to those components that are taken into account by

n fact the 4’ and ‘|’ operators are the same, but for clarityis used to add larger regular expressions together
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the algorithm and not the material type. The materials in the scene can have any combination of components
in their BSDF. For example a classic radiosity algorithm will only cover the diffuse illumingfidr)
whatever the material properties in the scene. The other components of the materials in the scene, will have
to be handled by another algorithm.

All the possible transport paths from light to eye are written as
L(D|G|S)*E = LX"E.

These paths must be covered by a rendering algorithm when a full global illumination solution is required.
Different components in a multi-pass configuration will cover different paths, but their combination should
cover all paths. This can be checked by combining the separate regular expressions of the different multi-

pass components. This is explained in the next section.

4.3 A simple multi-pass framework

This section outlines a simple framework for multi-pass methods. Both object-space and image-space
components of multi-pass configurations will be discussed and classified using regular exprédssohs (

and§4.3.2).

4.3.1 Object-space algorithms: partial radiance solutions

Object-space algorithms compute an approximation of a partial radiance solution in the scene. The solution
is partial because not all of the possible light transport will be covered by the object-space pass (e.g., only
diffuse storage or only caustics). Since the storage and the transport simulation have a limited accuracy,
these partial radiance solutions will be approximate.

Such a stored partial radiance approximation will be abbreviat&@PaR. A SPAR corresponds to a
certain radiance approximation:

SRR M : Ly(x— w).

It gives an estimate for the exact partial radiahggx — w) for any point in the scene and in any direction.
Each object-space algorithm is characterized by this radiance approximation.
Several important properties of object-space algorithms must be considered when applying them in a

multi-pass configuration (MPC):

e Covered transport: The light transport that is actually computed i8R M, can be expressed
by a regular expressioil. This expression is needed to identify redundant or missing transport in

the MPC.
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o Efficiency of construction: This indicates the time needed to compute the object-space solution.
It is no use spending hours on an object-space solution, unless it is view independent and more than

one view is required.

o Efficiency of reconstruction: A reconstruction evaluatdsy (x — ) for a particular point and
direction. The time needed for a reconstruction depends on how the data is stored. Since an image-
space pass requires a large number of evaluations, the efficiency of reconstruction will have a big

influence on the total rendering time.

e Storage efficiency: Storing the radiance approximation requires a certain amount of computer
memory. A low memory usage is of course preferred, but this usually leads to a decrease in accuracy

(see next item).

e Accuracy: The accuracy indicates the error made by approximating the exact radiance solution:
¢ = Ly — Lm. A high accuracy requires more time and memory for the object-space step, but a low
accuracy solution often requires a more expensive image-space pass to mask the errors (e.g., a final

gathering, as discussed further on).

The most common object-space algorithms in MPCs are discrete radiosity meith@d$.1) and meth-

ods based on particle tracingg(3.1.2). We will analyze their characteristics next.
4.3.1.1 Discrete radiosity methods

Discrete radiosity methods are finite element methods that discretize the rendering equation into a system of
linear equations. For each element in the finite element mesh, the radiance is approximated by a weighted
set of basis functions.

Most versions only consider diffuse BSDF components, so that the illumination of an element is com-
pletely defined by its radiosity (hence the name of the method). Assuming a constant basis function (a

constant radiosity over each element), the radiosity is given by the following system of linear equations:
) ) 4 50 - )
BY =B’ +p § F;BY.
2

The form factorF; is the fraction of the radiosity of elemepthat reaches element

Many different techniques exist to solve this large system of linear equations. Also many extensions,
such as hierarchical meshing [35, 101], discontinuity meshing [70], non-diffuse materials [45, 95, 19],
higher order basis functions over the elements [130], and non planar elements [87] have been proposed to
improve the accuracy and efficiency of radiosity methods. The reader is referred to the extensive radiosity
literature for more information. A good overview can be found in [22] (pre-1993 radiosity) and [5] (Monte
Carlo radiosity).

In general, radiosity methods have the following characteristics:
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e Covered transport: Most radiosity algorithms only cover diffuse transpokl;ag = LD*. Some
extensions can also handle glossy materials. Some other methods take into account the specular
component in the intermediate reflections, but the storage never includes the specular component,
because that would require a very fine subdivision of the hemisphere in order to accurately represent

the outgoing illumination.

o Efficiency of construction: Recent radiosity methods with hierarchical meshing and clustering can

be quite efficient.

o Efficiency of reconstruction: Reconstruction is very fast: the element that contains the evaluation
point must be located in the scene hierarchy, and then it is simply a matter of evaluating a few basis

functions.

e Storage efficiency: Since illumination information is stored for each element in the scene, the
storage depends on the complexity of the scene geometry. For very complex scenes, this can become

a significant drawback for radiosity methods.

e Accuracy: The accuracy in radiosity methods is largely determined by the discretization error, the
error made by mapping the radiosity function onto the finite element mesh. Typically the accuracy
is good for slowly varying illumination, but not so good for high illumination gradients such as
sharp shadows. Implementing good and robust meshing strategies is a very difficult part of radiosity

algorithms.
4.3.1.2 Particle tracing methods

Besides radiosity methods, almost all other object-space preprocessing passes in an multi-pass configuration
are based on particle tracing (Sge4.2). The difference between the algorithms lies between the storage

and reconstruction method, and in the covered light transport.

Covered light transport  Particle tracing can accommodate any material type. Accurate storage of the
specular component, however, requires too much memory, so that only diffuse and (sometimes) glossy

components are stored. This leads to the following covered transport options:
Mgt =L(X)*(D|G) or L(X)*(D).

Particle tracing is very adequate for computing caustics, and several methods use it to compute the caustics
separately:

Mcaustic:L(S)+(D|G) or L(S)+(D)-
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Characteristics of particle tracing methods The characteristics of particle tracing methods depend on
how the illumination is stored in the scene.

Many methods use a mesh or texture maps on the surfaces to accumulate contributions during particle
tracing. When a mesh is used, the methods are cabetinuous radiositynethods oparticle tracing
radiositymethods [79, 5]. Texture maps containing illumination information are often dadlledmaps[3,

40].
The characteristics of these finite element storage methods (texels in a texture map are also a form of

mesh elements) are:

e Covered transport: Since a finite element mesh is used, only the diffuse component of the radiance

is stored, but the scattering of particles can accommodate any BSDF component.

o Efficiency of construction: Tracing particles is fast. The number of particles needed to get a
decent radiance estimate in each element, however, depends largely on the size of the elements. Each
element needs a significant amount of hits for its radiance estimate to be accurate enough. For small

elements, many particles may be needed.
e Efficiency of reconstruction: Reconstruction is as fast as in discrete radiosity methods.

e Storage efficiency: The storage requirements depend on the number of elements, just as in discrete

radiosity methods.

e Accuracy: The accuracy is determined by the element size, and the variance of the radiance estimate
in each element. Large elements decrease the variance (the noise) but introduce a larger bias (e.g.,
blurred shadow boundaries). Small elements, on the other hand, require many particles to reduce the

variance in the elements to an acceptable level.
Using hierarchical subdivision to adapt the size of elements, can help with both the accuracy and
construction efficiency. This is discussed in more deta§l7ir8.

Other algorithms store the particles themselves. This leads to the following characteristics:

e Covered transport: Some methods that store the particles also use them to reconstruct glossy illu-
mination, while others only reconstruct diffuse illumination. (In the former case more particles are

needed.)

e Efficiency of construction: The construction time depends on how many particles are needed,

which in turn depends on the required accuracy.

o Efficiency of reconstruction: Reconstructing radiance from a number of particles requires density

estimation techniques and is typically much slower than evaluating a few basis functions.



CHAPTER 4. MULTI-PASS METHODS 53

On the other hand, the reconstruction can be made more intelligent as information from each of the
particles is available, which is not the case when each particle contributes directly to the radiance of

an element.

e Storage efficiency: Some methods, such as photon mapping (chapter 8), do not link particles to
elements directly. For highly tessellated scenes with many small elements, less particles than ele-
ments may be needed for a sufficiently accurate radiance approximation. Decoupling storage from

the geometry of the scene is one of the important advantages that particle tracing methods may have.

For accurate solutions, storing all particles requires a lot of memory, and it may be advantageous to
try to adapt the storage so that more particles are stored in areas where the illumination is important

(see chapter 9).

e Accuracy: The accuracy is determined by the number of particles that are stored, and by the method

used to reconstruct the illumination from the particles (see also chapter 8).

To summarize, the most frequently used object-space components in a multi-pass configuration are
discrete radiosity methods and patrticle tracing methods. In our work, we will use the former in chapters 5

and 6, and the latter in chapters 7, 8 and 9.

4.3.2 Image-space algorithms: readout strategies

Image-space algorithms compute a radiance value for each pixel in the image. In a multi-pass configu-
ration (MPC), an image-space pass will use the stored partial radiance approximafaRs) that were
computed in one or more object-space preprocessing passes, in order to compute the image more efficiently.
Almost all image-space passes in a MPC are based on path sampling algorithms. The most frequently
used image-space algorithms are classical ray tracing and stochastic ray tracing, the difference being that
classical ray tracing only handles perfectly specular scattering and thus will never amount to a full global
illumination solution. A few MPCs use rasterization algorithms, for instance with a Z-buffer to determine

the visibility.
4.3.2.1 Readout strategy

How a SR\ RIis actually used by an image-space pass is defined by what we cedhitheut strategyEach
SPR has its own readout strategy. For example, as we will see further on, a radiosity solution may be
visualized indirectly, after a diffuse reflection, while a caustic map is best visualized directly.

Readout strategies can also be identified by regular expressions. Consider an eye path that ends on a
surface where some stored illumination is used. The readout strategy defines which components of the

BSDF are used in the intermediate vertices of the path.
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Formally, given &SPAR M and an eye path of lenglt a readout strategy is identified by the following

regular expression:

MQK® = MQe1...Q:E when theSR\R is read
=0 when theSPR is not used for paths of length

EachQ, determines the scattering components that were used in the ¥ertERe complete expression
Q™ indicates which eye paths are covered, and combinedMitthe covered transport of tH&@R, the
contribution to the pixel radiance for paths of lengtis obtained.

For example, a combination of radiosity and stochastic ray tracing uses a typical readout strategy as

follows (given for a number of paths of different length):

2 Mrad E
4 Mea (GIS) (GIS) E (4.2)
5: E

Mrad (GIS) (GIS) (G|

The radiosity solution is read at the end vertex of every eye path. The scattering components in the inter-
mediate vertices) are restricted to glossy and specular only.

If all scattering components were used, including the diffuse component, the diffuse illumination would
be accounted for more than once. This can be shown, by considering the contribution of paths & length

and3 when all components are used:

3. MadD|GISE = LD*(D|G|S)E = LD*(G|S)E+LD*E (4.2)

4.3.2.2 Identification of redundant and missing transport

The regular expressions provide an easy way to check if a multi-pass configuration computes some light
transport more than once, or whether some transport is missing.

For a singleSMR the formal definition of a readout strategy allows to formulate a constraint that
indicates whether some light transport is computed more that once. In gen8faRaM and its readout
strategy do not compute any redundant light transport if there is no overlap between the regular expressions
for different path lengths:

vk, K >0,k#K : MQWNMQK) = 0. (4.3)

The total contribution to the image by &P\ R and its readout strategy is the union of the contributions

of all different path lengths:

Q= Lj QW,
k=0

I=MQ.
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When differentSmRs and readout strategies are combined, the regular expressions can be used to

check whether the combined transport covers all illumination exactly once:

No redundant transport: Vi, j:linl; =0
All transport covered: J;li = LX*E

Once the regular expressions of the different components are identified, these constraints can be checked

easily.
4.3.2.3 Typical readout strategies

Only a few typical readout strategies are used in today’s multi-pass configurations. Most common are direct

visualization and final gathering, both combined with specular and, when necessary, glossy reflections:

e Direct visualization: At every vertex in an eye path tl®R is evaluated directly. Scattering in the
vertices does not include storage components to avoid redundant trar@pert{G|S) or(S). The

readout strategy in equation (4.1) is an example of a direct visualization.

Direct visualization requires a very accurate radiance approxima&i,q(lx(ﬂ w)), otherwise the

errors in the reconstructed radiance will be visible in the image.

e Final gathering: With final gathering the&sP\R is only used indirectly. Suppose, for example, that
illumination is only stored for the diffuse component of the BSDF. Final gathering uses the stored
illumination after exactly one diffuse scattering. For a radioSiBrR, this would correspond to the

following readout strategy (given for several eye path lengths):

2: L E
3: L (G E +
3: Mirad D E

4: L (GS (G E +
4: Miad (G[9) D E +
4: Mrad D (G|S E

5: L (GS (G9 (G| E +
5: Mad (G|S) (G| D E +
5: E +

Miad  (G|9) D (G|

In practice, the extension of an eye path must choose between a diffuse or glossy/specular component.

Once a diffuse scattering has occurred, further scattering only uses the glossy or specular component.
The complete expression for this readout strategy is giver{®{*D(G|S)*E). The total covered

transport is the same as for direct visualization, but the solution differs in three aspects:

— Directillumination (XE) is always computed by the image-space pass; no precomputed storage
is used.

— Errors in the stored solution are masked by the indirect visualization. Therefore, a much less

accurate and thus faster object-space algorithm can be paired with final gathering.
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Direct visualisation Final gathering
Figure 4.1: Comparison of direct visualization and final gathering for a radiosity solution. The final gather only uses
the radiosity solution indirectly. This masks the discretization artefacts, but it takes a much longer time (25 min. versus
a few seconds) because many diffusely scattered rays must be traced for an accurate solution.
— The final gathering itself requires much more computation time. Stochastic ray tracing, for

example, computes good specular reflections with only a few rays, but many more rays are

required for an accurate diffuse reflection.

In figure 4.1 a comparison is made between direct visualization and final gathering. In the left column,
a coarse radiosity solution is visualized directly. The visualization took just a few seconds, but the under-
lying mesh is clearly visible. In the right column, a final gathering is shown. The indirect visualization
completely masks all meshing artefacts, but the computation time for this image was around 25 minutes (16

samples/pixel and 64 samples for the diffuse reflection).

4.4 Overview of existing multi-pass configurations

This section gives an overview of the main multi-pass methods presented in the global illumination research
literature. We will distinguish between methods that use finite element storage and methods that explicitly
store particles. Coincidentally, this also corresponds more or less to a chronological order, since the storage

of particles only has become popular in the last few years.

4.4.1 Finite element storage

The most common two-pass method, which we have used throughout the chapter as an example, is a ra-

diosity preprocesd O*) followed by a ray tracing pass to compute specular and glossy reflect®|$3(E



CHAPTER 4. MULTI-PASS METHODS 57

paths). The resulting image coverB*(G|S)*E paths. Note that glossy/specular to diffuse transport will
be missing from the image (e.g., caustics). Several variations have been proposed to remedy this missing
transport.

In '87 Wallace et al. [120] presented one of the first two-pass algorithms. It uses a radiosity preprocess
and a second, view-dependent pass based on the Z-buffer algorithm.

By rendering a mirrored version of the scene seen through a specular surface, both the radiosity and the
Z-buffer pass were extended to include a single, perfectly specular reflection. This technique is limited to a
few planar mirrors, because the scene must be rendered for each mirroring surface. The resulting extended
radiosity algorithm coverM = L(S%'D,)* paths: between each two diffuse reflections, a single, perfectly
specular reflections(,,) is possible.

Their image-space pass cov€'s= S°1E paths and reads out the radiosity solution directly. The total
covered transport iIMQ = L(S2:-1D,)*S%1E. This method can generate good looking images, but several
restrictions are imposed on the scene model (planar surfaces, perfect mirrors), and important transport paths
are missing in the image. Extending their method to recursive reflections would be possible but costly.

Sillion and Puech [97] generalize the previous method by using extended form factors, that are com-
puted by ray tracing. Extended form factors include recursive specular reflections and the ray tracing can
handle non-planar specular objects. Classical ray tracing is used as a final pass. The covered transport is
MQ = L(S; D,)*S; _E, which is the same as Wallace’s but with recursive specular reflections.

The methods above use a radiosity method to include indirect diffuse illumination in the images. At
the same time, other methods were proposed that compute and store caustics. For example, Arvo [3] used
texture light maps to store caustics that were computed by ‘backward ray tracing’ —tracing paths from the
light sources.

Shirley [91] uses a three-pass method that includes both radiosity and caustics:

e In a first particle tracing pass, caustics are computed. They are stored in light maps: high resolution
texture maps attached to each diffuse patch in the scene. No distinction is made between glossy and

specular materials; the caustics inclidg= L(G|S)" D paths.

e The second pass computes soft indirect illumination. Indirect diffuse illumination is computed using
a progressive radiosity algorithm. Extended form factors are computed via ray tracing. Paths covered

areMing = L(G|S)*D(G|S|D)*D.

¢ A final stochastic ray tracing pass completes the method. Direct illumination is computed on the fly,
while the indirect diffuse illumination and the caustics are visualized directly from the stored radiance
solutions. This separation between direct and indirect light is seen in many other MPCs. Scattering

in the readout strategies only includes the non-diffuse compon@nts{G|S)*E.
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The total covered transport of the method is:
(M¢+Ming +L+LD)(G|S)*E) = L(G|S|D)*E.

In theory this method covers all light transport. The main drawbacks are a high preprocessing time and the
use of light texture maps. These maps are mesh dependent and non-hierarchical. Convergence can be slow
if the caustics are not localized in small parts of the scene.

Heckbert [40] suggests a three-pass method: A ‘size’ pass from the eye records screen size information
in the scene, that can be used to guide subdivision in a subsequent light pass. This light pass traces particles
from the light sources and records radiosity in adaptive textures on diffuse surfaces. The light pass handles
perfectly specular reflections storiglgS;_ D) paths, so that the radiosity textures include caustics. The tex-
tures are subdivided adaptively (see d/3@.2). Particles can also be emitted from lit textures to simulate
diffuse interreflectionsl((S;_D)* paths). A final image-space pass uses classical ray tracing to read out the
radiosity textures. This method covers all specular and diffuse interreflections. The implementation, unfor-
tunately, did not include the size pass nor the diffuse interreflections, limiting the results to direct diffuse
illumination, caustics and specular reflections from the eye.

Chen et al. [18] recognized that it is hard to remove all meshing artefacts in a radiosity solution. There-
fore, they propose a progressive algorithm that uses radiosity for early feedback, but resorts to brute force
stochastic ray tracing and patrticle tracing for the final high-quality solutions.

In the final image, caustics are computed by particle tracing (stored in light maps), and all other illu-
mination is computed by stochastic ray tracing. The radiosity solution is used for paths that were already
reflected diffusely, signaling the first use of a final gathering method.

The final image produced by this method was not much faster than plain stochastic ray tracing, but
a decent image was available early on for fast feedback to the user. Rushmeier [84] improved on this
progressive method by using simplified geometry to accelerate the radiosity algorithm.

It must be noted that, when these multi-pass methods were proposed, it was recognized that they were
quite accurate but very slow. The separation of light transport that they proposed, however, is still used in
many multi-pass algorithms today. Large improvements in radiosity and particle tracing methods and much

faster computers, now have made such multi-pass algorithms most popular.

4.4.2 Particle storage

Several recent methods store illumination information in the form of particles instead of using light maps or
meshes. Since the particles can be stored independently from the underlying geometry, meshing artefacts
can be avoided.

In '95, Shirley et al. [93] presented density estimation. Particle tracing (using analog simulation) stores

particles on diffuse surfaces only. Using density estimation, an optimized mesh containing the stored il-
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lumination (LX*D) is constructed. Stochastic ray tracing completes the method, trgeig)*E) paths.
Since the stored illumination is visualized directly, a very high number of particles is needed for an accurate
solution. Several improved versions of density estimation have been presented [122, 121].

Jensen introduced a slightly different method using photon maps [47, 50]. Particles hitting diffuse
but also glossy surfaces are stored in a kd-tree, which is independent of the underlying scene geometry.
The stored transport coverblg = LX*(G|D)) paths. A separate, high-resolution caustic map only stores
particles contributing to caustic effectsl{ = LS*(G|D)). Nearest neighbor density estimation is used to
reconstruct illumination directly from the particle representation. Again, stochastic ray tracing is used in the
final pass, but the stored illuminatidy is only used indirectly after a final gather, requiring less particles.

The caustic map is visualized directly, because caustics cannot be reproduced well using eye paths. This
promising and popular method is described in detail in chapter 8. Note that the separation is very similar to
Chen’s method.

Keller presented another multi-pass method that stores a number of particles, which are then used as
virtual light sources in the second pass [56]. The original algorithm only supported diffuse illumination.

In the image-space pass, graphics hardware can be used to render the scene lit with each of the particles
separately. Adding all these images delivers the final image. Due to the restricted dynamic range of graphics
hardware (only 8-bits per color channel at the time), the accuracy was limited.

Recently this method was used together with a fast, coherent ray tracer [119]. Using full floating point
arithmetic, without the limitations of the graphical hardware, a decent, full global illumination solution can
be obtained.

Another multi-pass approach splats the particles directly to the screen [107] to obtain glossy illumina-
tion. This method also uses hardware rendering as a final pass. While the method covers all illumination,

the accuracy is quite limited due to the hardware rendering.

4.4.3 Lighting networks

Whereas all previous methods proposed one specific multi-pass algorithm, lighting networks provides a
framework for developing multi-pass methods. Lighting networks were presented by Slusallek et al. [99,
100]. The framework allows a user to combine partial transport operators into arbitrary multi-pass algo-
rithms. The transport operators can be restricted to only a part of the scene, and storage conversion operators
are provided to facilitate the connection of different partial light transport operators. Regular expression op-
erations allow to test if there is redundant or missing transport in the network. While this framework allows
many different configurations, the task of configuring an efficient lighting network is difficult and requires

an experienced user.

Our regular expression framework is a subset of the lighting networks framework. The improvements
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presented in the next chapter, could also be implemented into the framework of lighting networks.

4.5 Conclusion

This chapter introduced multi-pass methods. A simple framework was presented that is based on regular
expressions to classify different multi-pass methods. A discussion of common object-space and image-
space components was given, together with an overview of the current multi-pass research. The key to a
good multi-pass method is an intelligent separation of light transport, so that the strengths of the different

components are preserved.



5 Regular expression based path
evaluation

In the previous chapter, regular expressions were used to describe the light transport covered by specific
multi-pass components. This was convenient, because overlapping or missing transport could be identified
by these expressions. In this chapter, we turn this concept around: the covered transport of the components
is determinedlirectly from an arbitrary regular expression that is supplied by the user.

The technique presented in this chapter is simple but practical. It can be used with any algorithm that is
based on path sampling. The user just has to supply a textual regular expression for the paths that need to be
covered (for example in an image-space path tracing pass) and the evaluation of the paths will automatically
adapt to the requested transport.

In §5.1, a simple example of an enhanced combination of radiosity and path tracing will illustrate that
this requires a decoupling of the path sampling and the path evaluation, because in a single path vertex
different combinations of BSDF components may be required in the path evaluation.

Section 5.2 offers details on how a regular expression based path evaluation can be implemented effi-
ciently.

Section 5.3 explains the added flexibility that a regular expression based path evaluation brings to the
design of more advanced multi-pass configurations. One important consequence is that bidirectional path
tracing can now be easily added to a multi-pass configuration.

Results in§5.4 show a detailed combination of radiosity and bidirectional path tracing. The regular
expressions are used to fine-tune the combination so that each part of the light transport is assigned to the
most appropriate method. Section 5.5 concludes this chapter.

The technique presented in this chapter was previously presented in [P3]. It will also be used in the next

chapter on weighted multi-pass methods.

5.1 An enhanced combination of radiosity and path tracing

A common multi-pass method is the combination of radiosity and path tracing (see also chapter 4). Radios-
ity computes all the diffuse interreflections and path tracing fills in the glossy and specular reflection (and
refraction) from the eye. The scattering in path tracing, however, is restricted {& hecomponents,
because inclusion of the diffuse component results in the computation of redundant transpt3ysge

The paths covered by the combination &fieD*(G|S)*E), which misses some transport.

In this section we present a simple enhanced readout strategy that does result in a full global illumination

61
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M(G|S)X*E

Figure 5.1: Path evaluations based on regular expressions can require different scattering components for the BSDF
evaluations in a single vertex. This figure shows the evaluation of an eye path of length 4 and all its sub-paths according
to the regular expressidvi (G|S)X*E.

solution. The paths covered by path tracing are defined by the regular expré&3i®)IX*E + E).

Enumerating the contribution of paths with this regular expression gives:

2 Mrad E
3: Mad  (GIS) E
4 Mg (GS) (X)) E (5.1)
5 E

Mg (GIS)  (X)  (X)

In this readout strategy all the BSDF componeitsdre taken into account, except for veridgx 1) in
a path of lengttk. With this enhanced readout strategy, the image contains all possible illumihati@n

This can be shown as follows (witfl;,q substituted by D*):

e Combining the first rows in equation 5.1 gives:

2+3:LD*E+LD*(G|S)E = LE + LD*DE -+ LD*(G|S)E

= LE +LD*(D|G|S)E = LD*X%1E.

e When adding the following rows, the range of the exponerX ofcreases, leading to the following

total covered transport:

24+3+...: LD*X%®E = LD*X*E = LX*E.

Thus a slight modification of the readout strategy, changes the covered transport so that all light transport is
computed.

While the extension in this example is simple, the important thing to note is that different scattering
components are used for the same vertex depending on the length of the path evaluated. This is illustrated

in figure 5.1. An eye path of length 4 and its evaluated sub-paths are shown. The same vertex sometimes
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includes all scattering components, sometimes only glossy and specular. Therefore, the BSDF evaluations
must be done when the path is evaluated and cannot be determined and fixed when sampling the new
directions (all components are taken into account in the pdf when sampling a direction). This decoupling is
one the important aspects of the regular expression based path evaluation.

An example of the enhanced combination will be showg&rt.3.

5.2 Implementation

To efficiently evaluate paths according to a (textual) regular expression, some changes need to be made to

the implementation of the path construction and evaluation.
5.2.1 Path construction

When evaluating paths with regular expressions, different BSDF components may need to be used in a
single vertex in the path (as was illustrated in the example in the previous section).

This has two consequences for path construction:

e Since the exact BSDF components for scattering in a vertex are not known, the pdf for sampling a

new direction should include all components of the BSDIG|S).

e The BSDF evaluation is stored separately for each component. This allows a fast evaluation of any
combination of components later on. The overhead compared to a standard BSDF evaluation is small,

since most BSDFs have separate code for different components anyway.

Thus, after a path is sampled, a list of BSDF evaluations for each separate component is available in each

path vertex.
5.2.2 Path evaluation

To prevent expensive operations on the textual regular expression each time a path is evaluated, a simple
data structure is precomputed.

For every possible path length, a list of ‘simple’ regular expressions is constructed. A simple regular
expression does not contain any enumeration operators suelos. Such a simple expression will have
as many elements as there are vertices in the path. To construct the list, all possible expansions of the
complex regular expression are enumerated. For example, the list for the exptd3s{@iS)*E and a

path of length 4 would look like:
L D D E
L D (GlS) E
L (GI§ (G5 E

INote that if some of the components of the BSDF are not used in the evaluation, the pdf used for sampling the direction may be
slightly sub-optimal, because these unused components were included in the sampling. Although, in some cases, unused components
in a certain vertex may be deduced beforehand from the regular expressions, the benefits of this would be small compared to the
additional implementation.
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The evaluation of a path will iterate over the list, gather the necessary BSDF evaluations, and add the results.
Note that other factors in the path evaluation that do not depend on the regular expressions, such as cosine
factors and the self emitted radiance, can be multiplied once, separate from the BSDF evaluations.

Such a list of simple expressions is kept for each different path length. In our implementation, a maxi-
mum path length is specified that limits the number of interreflections and thus also the number of lists. Of
course, higher order reflections are missing, but this is not a problem for a sufficiently high maximum path
length.

The evaluation lists and the separate BSDF components limit the overhead of regular expression based

path evaluation to abo&— 10%in our moderately optimized implementation.

5.3 Consequences of the path evaluation from regular expressions

As a consequence of the path evaluation technique, we can now allow arbitrary readout strategies by deriv-
ing them directly from the regular expressions that determine the covered transport.

We use it to tune the covered transport in image-space passes. For each stored radianceHaliR)on (
a (textual) regular expression can be supplied and parsed into a readout strategy. The paths constructed
during the image-space pass are evaluated using this readout strategy and the correct scattering components
are determined for each vertex.

This approach has several advantages:

e The path evaluation is decoupled from the path construction. The BSDF components to use, which
are dictated by the regular expression, are fixed at the time of evaluation and independent of how the

path was constructed.

This decoupling enables the usage of other path sampling techniques, such as bidirectional path
tracing (BPT). The use of BPT in multi-pass methods was in fact the main motivation for the regular

expression based framework [P3].

o Additionally the support for arbitrary readout strategies allows for flexible fine tuning of multi-pass

configurations:

— Missing transport in a MPC can be identified by the regular expressions. Given seieRd

M; and their readout strategi€g, any missing transport is given by:

(LX*E) \ (U MiQi).

This expression is a regular expression in itself and the necessary contributions can be computed

with path tracing or bidirectional path tracing by specifying the self-emitted radiancg Bsix
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and the above expression as the readout strategy. This makes it very easy to add the missing

transport to existing MPCs.

— Instead of adding missing transport, one can also remove some specific light transport. For
example it could be transferred to another, better method or even completely removed from
the image if it is an important source of spike noise. The latter results, of course, in a biased

solution.

e Although not important for robust rendering algorithms per se, the framework provides a nice didac-
tical tool for analyzing light transport. It is easy to separately render specific light transport features

such as caustics, indirect light, or paths of a specific length.

The extensive example in the next section, a combination of bidirectional path tracing and Galerkin radios-

ity, will demonstrate some of these benefits.

5.4 Combining radiosity and bidirectional path tracing

The flexibility of the regular expression based path evaluation will be demonstrated by an extensive exam-
ple: the combination of radiosity and bidirectional path tracing.

Starting from a plain radiosity solutior§g.4.1), the method will be gradually improved from a tradi-
tional two-pass method using path traciri$.@.2) and an enhanced two-pass method covering all light
transport §5.4.3) to the combination with bidirectional path tracifi§.6.4) and an optimization for indi-
rect caustics§b.4.5). Each time a different allocation of light transport over different algorithms is used,
showing the flexibility of the framework.

Note that in our implementation, all the separations in this example can be specified with just a few

textual regular expressions.

5.4.1 Radiosity only

A higher order Galerkin radiosity method with hierarchical meshing and clustering is used. An accurate
cubature rule for form factor computation and a low maximume-link-error threshold ensure a high-quality
solution that can be visualized directly [5].

In figure 5.2 the radiosity solution is shown for the same scene that was used in chapter 3 (around 10
minutes to compute this accurate solution). Clearly this solutibR*() paths) is missing important light
transport.

For comparison purposes, an image computed with bidirectional path tracing is shown in figure 5.3.

While the indirect diffuse illumination is noisy compared to the radiosity solution, this image includes all
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light transport. The most apparent differences are the caustic effects and the fact that we can see through

the glass sphere.

5.4.2 Traditional two-pass method

Figure 5.4 shows an image computed with a traditional two-pass method. Path tracing with only glossy and
specular scattering is combined with the radiosity solution. For this ifdpgéhs per pixel are used. It took
a few minutes (on top of the radiosity computation) to compute this image. All subsequent image-space
passes take about the same computation time.

The image coversD*(G|S)*E paths. While refraction through the sphere is handled correctly, caustics

are still missing.

5.4.3 Enhanced two-pass method

In §5.1 an enhanced readout strategy for the path tracing pass was given, which (6{&¥sX(*E + E)
paths. Combined with the radiosity solution it was shown that all light transport is covered.

Figure 5.5 shows an image computed using this enhanced readout steasagyples/pixel). While all
light transport is covered, the image exhibits a very high noise level, because the eye paths are not adequate
for all illumination features. For example, the caustic effects are present, but they are very noisy, because,
as explained ii§3.4.1, eye paths do not sample these effects well.

Therefore, it would be interesting to combine bidirectional path tracing with the radiosity solution.

5.4.4 Bidirectional path tracing

Due to the regular expression based path evaluation, it is easy to incorporate bidirectional path tracing into
the multi-pass configuration. We will keep using path tracing to read out the radiosity solution, but we will
also use bidirectional path tracing (BPT), which reads out the self-emitted radiance. The eye paths, that are
traced for the bidirectional paths, are used simultaneously for path tracing.

To combine BPT and the radiosity solution we will transfer some light transport from the radiosity-path
tracing combination to BPT. From the covered transport of radiosidy Y and path tracing(G|S) (X)*E + E)
it follows that (L(G|S)X*E) transport is computed by eye paths that directly hit a light source.

This transport can be transferred to BPT easily. The stored radiosity solution is modified so that it does
not include the self-emitted radiantg, thus covering onlyl(D*) paths. Radiosity with path tracing now
covers (D" (G|S)X*E). The remaining transport, that includes the specular to diffuse transport, is handled
by BPT (L(G|S)X*E + E) paths).

Figure 5.6 shows the image computed with this new multi-pass configuration. 4Quaths per pixel

are traced, because the bidirectional paths are more expensive.
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The left caustic comes out much better, but the one on the right is still noisy. This is because it is an
indirect caustic. It is caused by the glass sphere, that focuses the bright diffuse illumination of the white
panel onto the floor. This effect consists mainlylddSTDE paths, still handled by eye paths that are
reflected diffusely first, and then travel through the sphere until they hit the white panel. Clearly, eye paths

do not sample the effect well.

5.4.5 Indirect caustics optimization

Since the indirect caustic is identified ll8S ™ DE transport, the configuration can again be adjusted so that
this transport is handled by BPT. This requires a separate storage of direct difit)send indirect diffuse
(LDD™) illumination in the radiosity solution.

The optimized configuration now has three differ8fnRs:
e L: Self-emitted radiance combined with BPT, coverih¢d|S)X*E) plus all LDS*DE) paths.

e M p =LD: Direct diffuse illumination combined with path tracing, covering the following paths:

(Mo ((G|S)X*E + E)) minus M pS™ DE).

e Mg =LDD™: Indirect diffuse illumination, which is also combined with path tracing, covering

(Mina ((G|S)X*E+E)) paths.

In total, all light transport is covered. Figure 5.7 was computed using this configuration, and it is clear that
the indirect caustic is handled much better. This example shows that a flexible separation enable the design
of better MPCs.

However, in other circumstances, for example if the diffuse panel were larger, path tracing using the
radiosity solution might become better. In the next chapter a technique is presented that weights such

overlapping transport so that an extreme separation is not necessary.

5.5 Conclusion

The careful separation of light transport presented in this chapter shows that regular expression based path
evaluation is a valuable tool in designing multi-pass configurations. Since most existing multi-pass meth-
ods resort to path tracing as a final image-space pass, the regular expression based approach would be an
interesting addition to these methods. An additional benefit is that bidirectional path tracing can now be
used to compute part of the light transport.

The careful separation in the radiosity—bidirectional path tracing example also raises an interesting
point: it is not always obvious, for a specific part of the light transport, to which algorithm or combination
of algorithms it must be assigned. In the next chapter a technique is presented that makes a weighted

combination of methods, which preserves the strengths of the methods even within overlapping transport.
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gt

Figure 5.2: Radiosity solution only F/ig)ure 5.3: Plain bidirectional path tracing (BPT) (4
sip

Figure 5.4: Classic two-pass method (9 s/p): Radios+igure 5.5: Enhanced two-pass method (9 s/p): path
ity + Path tracing. Onl\LD*(G|S)*E paths are cov- tracing coverg(G|S)X*E) + E paths, so that all illu-
ered; other transport is missing mination is present in the (noisy) image.
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Figure 5.6: Radiosity and BPT (4 s/p): Caustics areFigure 5.7: Radiosity and BPT with indirect caustic

computed with BPT and come out much better. optimization (4 s/p): The right caustic originates from
the white diffuse panel and is now also computed us-
ing BPT.

Figure 5.8: Magnification of the caustic from figure 5.5 (left) and figure 5.6 (right).

Figure 5.9: Magnification of the indirect caustic from figure 5.6 (left) and figure 5.7 (right).



6 Weighted Multi-Pass Methods

Previous multi-pass methods separate light transport in disjunct parts, and assign each part to a specific
algorithm or combination of algorithms. In this chapter a new technique is presented that allows us to make

a weighted combination of specific overlapping light transport.

6.1 Introduction

In the previous chapter, a detailed example showed a manually tuned separation of light transport for the
combination of bidirectional path tracing (BPT) and radiosity. While the use of regular expressions allowed
to transfer indirect caustics to BPT to improve the image, it would be interesting if the multi-pass method
was able tmutomaticallyassign the transport to the most appropriate method.

One way to achieve such an automatic procedure is to use weighting instead of separation. The key
point of weighting is to allow overlapping transport between different methods in a multi-pass configuration
(MPC), but to assign a higher weight to the contribution of the most appropriate method.

The problem of preserving the strengths of different rendering methods changes from finding a good
separation to finding good weighting heuristics. A single, constant weight for each method that computes
overlapping transport, for example, will not be better (and even worse) than separation because such a
weight cannot differentiate between the different illumination features within the overlapping transport.

Weighted multi-pass methods, introduced in this chapter, provide an interesting, theoretical framework

for developing good weighting heuristics. The weighting technique has the following characteristics:

e The technique applies to MPCs that use Monte Carlo path sampling techniques (path tracing, BPT)

for their final pass.

e Weights are based on individual paths generated in the image-space pass. Good weighting heuristics
ensure that the final contribution will be small for ‘bad’ paths, that would cause a high variance in the

image.

e The weighting heuristics should ensure an unbiased, correct solution. Therefore, constraints are

developed that must be satisfied by the heuristics.
The benefit of weighting individual paths over separation is apparent:

e Separation must choose a single method to assign illumination features. Each separated feature will

cover a whole set of paths.

e The weighting of paths can differentiate good and bad paths even within overlapping illumination.

70
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o Different methods can contribute to the same illumination. For example, if a difficult feature is not
handled well by any of the methods, the total weight will be evenly distributed between them so that

they all contribute to the feature.

The theory of weighted multi-pass methods is develop€gfbi. A generalization of multiple impor-
tance sampling is presented that handles partially precomputed integrals. Constraints to ensure an unbiased
solution and appropriate weighting heuristics are derived. This generalization of multiple importance sam-
pling is not restricted to graphics, but is applicable whenever the method of expected values and multiple
importance sampling are combined.

In §6.3, the application of the weighting theory to multi-pass methods is discussed in general. The
weighted combination of radiosity and bidirectional path tracing6m, shows a practical example of
the weighting theory. This example shows that weighting allows the development of more robust and better
multi-pass configurations, but it also shows that this is not an easy task and that the weights must be handled
carefully. General conclusions are discussetbirb.

We presented the theory and application of weighted multi-pass methods previously in [P4], which is
the first paper that used weighting instead of separation in a multi-pass method. This chapter provides a

more in-depth discussion of the method and suggests further extensions and applicatiot.s (Bee

6.2 Multiple importance sampling and the method of expected values

Multiple importance sampling applies when different pdfs are used to estimate the same if§&gra).(

For example in bidirectional path tracing, the different methods for constructing paths correspond to differ-
ent path sampling pdfs, and for each path an appropriate weight must be computed. The weight of a single
path depends on all the techniques that can generate the exact same path.

The problem dealt with in this chapter is different, because some sampling techniques use precomputed,
partially integrated results. These techniques actually use the method of expected values to reduce the
dimensionality of the integration problem. This is shown schematically in figure 6.1 using integration
over paths as an example. Both paths compute the same integral, but the shorter path uses precomputed
information. Although the shorter path estimates a lower dimensional integral, its variance may be higher
than that of the longer path. This is the case when its pdf does not fit the remaining integrand well.

In this section we will generalize multiple importance sampling to accommodate partially precomputed
integrals. The theory will be derived using two pdfs and extended later on to an arbitrary number of pdfs

and precomputed results.



CHAPTER 6. WEIGHTED MULTI-PASS METHODS 72

LD (Rad.)

/D]

E<\7 Q

=

Figure 6.1: Two differently sampled paths that compute the same transport, although their lengths differ. The shorter,
dashed path uses a precomputed radiosity solution. This difference must be taken into account when weighting the
paths.

6.2.1 Problem statement

Suppose we want to compute the following integral :

| :/Qy/QX f1(x,y) dx dy . 6.1)

Both variablesx andy may be multi-dimensional vectors.

Define a functionf, that is the result of partially integrating over the domairfy:

fa(y) = A fi(xy)dy. (6.2)

The integral can also be computed usirig

I= [ fay)dy. (6.3)
Qy

The integrals (6.1) and (6.3) can be estimated with Monte Carlo integration, using importance sampling

according to the pdfp;(x,y) andpz(y) respectively. This leads to two estimators for

1Rk w)

<|>1_W1i: pL(%.Yi)’ ©4)
12 fay))

2= 3 o) (6.5)

These estimators compute the same integral. At first sight one would say that (6.5) would be most efficient to
computd, since the precomputed part of the integral is exact and a lower dimensional integral is computed.
Howeverp; and p2 have an important influence on the variance of the estimator. For some sub-domain of
Qy x Qy, p1 can be much more efficient tham in the corresponding sub-domain Qf,. Therefore, we

would like to use weighted estimators.
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6.2.2 Weighted estimators

To combine the two different estimators, each sample is multiplied by a weighting function, that depends

on the sample itself:

N :
ZlWl Xi,¥i) 1(%, yl) z W2(yj) fZ(yJ) . (6.6)

Xuyl) Np & p2(Yj)
This equation represents a whole class of estimators, instantiated by a particular choice of the weighting

functions.

6.2.3 Weighting constraints

Not all weighting functions will deliver a correct result. Weighting constraints can be derived by requiring

the combined estimator to be unbiased:

E()d =1= [ [ fixyxdy.

Computing the expected value gives

E ()]

1N ) LR f(y))
- [Nlizwl()q’y') ) Nz 2" paly)

=1

fa(y;) ]

Nz
= N ZiE |:W1 X, Yi) 23’;'))} N, jZlE {WZ(yj) p2(Y;)

= *'\'1/9/9 p ))p(xy>d><dy
S, [ w z<y>f2(y)p2<y>dy

N p2(Y)

L ity taxy) 00 +waly) fa(y)
Qy Joy

€2 /Q y ( /Q xwl(x,y)fl(x,y)dx + wa(y) /Q x fl(x,y>dX> dy

[ty +wa(y) fiey dedy.
Qx /Oy

To ensure an unbiased solution, the following constraint must hold:
Vx € Q.Y € Qy i wi(X,y) +Wa(y) = 1. (6.7)

Note the similarity with the multiple importance sampling constraint given in equation (8;2) Wk (x) =
1).
This constraint ensures that the total contribution of a sarfyplg is not too large or too small. How-

ever, the constraint must hold for any valuexaindy. Sincey determinesw;(y), it implicitly determines
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wi(x,y) through the constraint. Therefore, the weightx,y) should not depend on From now on the
notationws (y) will be used.
This is an important constraint that will have a great influence on the weighting heuristics. It has some

interesting implications:

e If Q, covers a large part of the total domady x Qy (e.g., 8 dimensions out of a 10-dimensional
domain), the weights, only depending wrwill be rather coarse. Therefore, best results are expected

whenQy is small compared tQy.

e For samplegx;,yi) which are drawn according to pgth, the sampled valug may depend on the
value ofx; (i.e., whenx; is determined first and the samplingypflepends on that result). To evaluate
the weighting heuristie; (y), all dependencies oomust be removed. This requires a careful analysis

of the sampling procedure fqm (x,y).

As we will see in the applicatior§6.4), one way to remove these dependencies is to compute a partial

weight factor in the preprocessing pass where the integral@yés computed.

These implications will manifest themselves when applying the theory to multi-pass algorithms.
For standard multiple importance sampling, another constraint was set for the weighting heuristics
(eq. 3.2 (2), p. 28):pk(X) = 0 = w(x) = 0. This constraint implies that the weight of a sample must
be zero if the sample cannot be generated with the corresponding pdf. This constraint is only important
when some of the pdfs do not cover the whole domain of the integrand.
A corresponding constraint for our generalization can be derived and is given by
Jo, P y)dx =0 = wi(y) =0
YWeQy:q Jo, Pr(Xy)dx #0 = Vxe Qx:pi(xy) #0 (6.8)
P2(y) =0 = wa(y) =0
Similar to standard multiple importance sampling, the weights must be zero if the pdf cannot generate the

sample. For example, if2(y) = O for a certain pointy, this point will never be generated lpy and its
weightw,(y) must be zero.

The corresponding constraint fpi(x,y) andws (y) is slightly different, because (y) cannot depend
onx. Therefore, the complete domdiy must be taken into account in the constraint. The first part states
that, if a certairy cannot be generated Ipy (x,y) (for any value ofx, hence the integral), the weigi (y)
must be zero. The second part, on the other hand, states theaiifbe generated, then, for that value of
Yy, p1(X,y) must cover the whole domafy. This is because the weight (y) is not able to differentiate
between the parts @y that are and are not covered py.

This second constraint can be derived by computing the expected value of the combined estimator while
taking into account that the pdfs do not cover the complete domain. In our application, the pdfs do cover

the whole domain, so that this constraint is of less interest for the rest of this chapter.
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6.2.4 Weighting heuristics

Now that constraints on the weighting functions are set, we can look for good weighting heuristics. The
optimal weighting functions will minimize the variance of the combined estimator. First, an expression
for the variance will be establisheg6(2.4.1). Then we will (partially) minimize the variance, and derive

weighting heuristics from the minimizatio§§.2.4.2).
6.2.4.1 \Variance

The variance of the combined estimator is given by

_ 18, ey ], 1 ¥ \ fo
Ve = leizl [ (yl)p(xhyl)}J”NzZJZlv {WZ(yJ)Pz(yj)]

= N1<// 12 p(x,y)dxdy
Qy JQx pL(x

/ / y) f1(x,y) dxdy))

1 f2
e ([, v 52 petycy— ([ ) 69

_ wi(y)? 1 fa(xy)? wa(y)? (Jo, fi(xy)dx)?
- /Qy< R A i o )d

- (l\:ll-l</Qy a wi(y) f1(x,y) dx dy)?

First some definitions are given:
_ [ Hxy)
cly) = /Q oY) dx, (6.10)
_ By <_ Fxy) )
C2(y) = 02 (y) —/QX 5aly) dx ), (6.11)
Hl:/Qle(y)/QX fl(x,y)dxdy:/Qywl(y) fay)dy, (6.12)

maAmmAﬁmwmwaAMMbww~

Now the variance (6.9) can be rewritten as

2

wa(y) wa(y)? ) (u% u%)
V(I :/ —=C —=C dy—( —=+=1]. 6.13
[(P)e] Qy( N, WM - (R, (6.13)
6.2.4.2 Minimizing the variance

Minimizing the complete variance expression (6.13) is very difficult. The integiaadpy appear squared
in the expression. This prevents a reformulation to an expression containing a single integral, which would

allow a simpler minimization of the integrand only.



CHAPTER 6. WEIGHTED MULTI-PASS METHODS 76

The first term of the variance is a single integral, and the integrand of this term will be minimized
separately. This will deliver weighting heuristics. For the second term, containing the squared integrals,
bounds will be derived that indicate how much better an optimal weighting function can be, compared to

the derived heuristics.

Minimization of the first term  Recall the term to be optimized,

2 2
/g:zy (Wll\(l:):) Cl(y) + W2|\(Iy) C2(y)) dy

2
The integrand is always positive, so if it can be minimized for an arbityarthe integral will also be
minimal. Further on, we will drop thgin the integrand to simplify the notation.
From the minimization the weighting heuristics will be derived. These heuristics must, of course, satisfy
the constraints given if6.2.3. The first constrainty; +w. = 1, is introduced into the minimization using
a Lagrange multiplieh (The resulting heuristics will automatically satisfy the second constraint (6.8)).

Minimizing for wy andws, all partial derivatives (fow;,ws, A) of the following equation must be zero:

woow
m= —101+—202+)\(W1+W2—1).
N1 N2

The partial derivatives are given by

om WiCp

— = 2221042
an N1 tO+A,
om W>2Co
—— = 042224\
aW2 + N2 A
om - _ Wy +w, —1
oA rrhere

Solving this set of equations fav; andw, yields

Ni/ci(y)
w = ,
W )+ (Ne/e) 610
B Nz/ca(y)
wo(y) = :
(Nz/cr(y)) + (N2/ca(y))
These weighting functions minimize the first term of the variance.
Bounding the second term The second part of the varianc%zlﬁ ﬁ—% is bounded by
2 2
LT S SR ) (6.15)

Ni+N> “ N N — min(Nl,Nz)

This can be proved as follows:

e The upper bound follows from:

W15

- 1 |2
N1 Np — min(Nl,Nz) '

2 _
(W tbe)” = TN )

2 2
D —
(u1+u2) = min(Nl,Nz)
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e The proof for the lower bound is a bit more involved. The weighting heuristics determine the value
2 2
of ly and, (eq. 6.2.4.1). The terrf{: + 12 can be minimized over all possible weighting heuristics,
given the constraint that; + o = 1. This minimum determines the lower bound of the term. The

minimization can again be performed with a Lagrange multiplier. All partial derivatives of

W _
N1+N Mg+ —1)

must be zero. The resulting set of equations delivers the minimum values:

N N
NN 2T NN

M=

. . . . 2 2 .
Substituting these results into the variance tc#ﬁnﬁr N% yields the lower bound.

Discussion The minimization and derivation of the bounds are very similar to multiple importance sam-

pling. The weights derived from the minimization,

B Ny/ci(y)
wily) = (N1/ca(y)) + (N2/ca(y))
woly) = Na/Co(y)

(N1/ca(y)) + (N2/ca(y)) ’

are generalizations of the balance heuristic (eq. 3.3). They reduce to the balance heuristix whtre
empty domain, as will be shown §6.2.5.3.

This generalized balance heuristic minimizes the first term of the variance (6.13). Other weighting
heuristics can only improve upon the balance heuristic within the specified bounds (6.15). This means that
the generalized balance heuristic is always a good choice for computing the weights. Just as with multiple
importance sampling, one could define generalizations of the power heuristic or other heuristics, which are
expected to have similar properties. In practice, we have used the generalized balance heuristic in all our

applications.
6.2.4.3 Relation to the method of expected values

The method of expected values is a special case of our weighted estimator, namelgpwhre marginal

= / p1(x,y) dx
Qx

It is well known that, in this particular case, the single estimator usingppdf preferred (se&3.3.5).

pdf of p;:

It is interesting, from a theoretical viewpoint, to investigate what weights would be computed with the
balance heuristic. Using the equaljty(x,y) = p2(y) p(X]y), that relates marginal and conditional pdfs, the
weightw, can be rewritten as:

N2

> .
(Ny/ fo, TODLED) gy 1,

w2 (y) = (6.16)
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The weight will be close to one if the integral in the denominator becomes large.
The variance of a single sample Monte Carlo estimator that estinfig@sfor a giveny by integrating

overQy is given by

@ 1 Y o o
V[p(ﬂy)}‘/ox oixy) >~ 20 (6.17)
Dividing this equation byf2(y) gives
6O | iz [ RON/E)
V[D(ZIY)}/fZ(y)_/QX ooy XL (6.18)

When the variance increases, the integral on the right side also increases. This integral also appears in
equation (6.16), and an increase causgy) to be closer to one. In other words, if a difficult integral is
precomputed ove®y, the weights for the samples using the precomputed result will also become larger. If
a simple, low variance integral is precomputégis estimated accurately by just a fewsamples and there
is no reason not to count the samples generated ysipgy).

This result shows that the balance heuristic gives a reasonable weight even in this limiting case. Of
course, the number of samples used for each estimator also influences the weights. In practice, one would

choose\; = 0, and allocate all samples to the second and better estimator.
6.2.5 Generalization for any number of sampling techniques

The results for two sampling techniques can be extended to any number of sampling techniques, each with
a possibly different precomputed integral. The result is almost identical, but to concisely represent the

general case we first need to introduce some notation.
6.2.5.1 Definitions and notation

Suppose that we hawé techniques available to estimate a multi-dimensional intdgsaf, f(x) dx. Each
techniquek, has an associated sub-dom@&ipfor which ka f(x) dx is precomputed.

Just as in the case of two pdfs, the weights must not depend on any of the precomputed sub@dpmains
We will define thecommon sub-domaif)y, as the sub-domain that none of the techniques precompute

M
Qy =0\ (J Q-
k=1

Theresidue sub-domaji2_y, indicates that part of the total domain that is not precomputed and that is not
part of the common sub-domain:

ij:Q\(QkUQy).

The integration variablg can also be decomposed in a precomputed, a common, and a residue part:

X=Xk X~k Y.

1The sub-domains used in the general formulation can cover different dimensions. The set operations on these domains are
implicitly extended to handle such cases. For example, the union of two do@giasd Qy that cover different dimensions in the
complete domaii is given by the product-space of these domafsx Qy.
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The remaining integral to be computed by a technikjigegiven by

1= [ [ fcnydy de.
Q /oy

These integrals are estimated using a pdfisingNy samples.
6.2.5.2 Weighting heuristic

The combined estimator uses all the different techniques to generate samples, and weights each sample with

an appropriate weighty:

O fie(X-k,i> )
e= 2 ne 2, W00 oo 6.19
e kzl Nk i; k(yl)Pk(Xﬁk,th) ( )
The generalized balance heuristic always provides decent weights, and is given by
N/ Ck
Wi(y) = M
Yie—1 Nk /G (Y)
- fie (<k.y)
with ¢ :/ RS SRA NI 6.20
< oy pCy) (6.20)

The factorsck remove any dependency of the weights on the residue domain. As a result the weights only
depend on the common sub-domain. The derivation of this heuristic is analogous to the derivation of the

heuristic for two pdfs.
6.2.5.3 Relation to multiple importance sampling

The balance heuristic as given in equation (6.20) generalizes the balance heuristic of standard multiple im-
portance sampling and the one we derived for just two pdfs. It allows an arbitrary combination of sampling
techniques with partial precomputation of the target integral.

Multiple importance sampling (MIS), for example, corresponds to the case were nothing is precom-

puted:Qy = 0 (= Q_k) andy = x. Theck(y) factors become

MIS: o ly) = K22 =

This leads to the weights
Ni/ck(X)

S k-1 Nk /S (X)
Nepk(x)/ F2(x)
k-1 Ne P () / F2(%)

Nk k(%)
Sh—1 N Pe(¥)”
which are identical to the balance heuristic given in equation (3.3).

MIS: w(x) =

It is interesting to note that, while the weights in standard MIS only depend on the pdf, the intégrand
is present in they terms. This is logical: Some of the estimators use a partially precomputed integral. The

weighting heuristics must take into account how difficult the precomputation is for those techniques that do
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not use the precomputed information. Tdygerms include an indication of the variance of estimating the

partial integral with the other pdfs.

6.3 Implications for weighted multi-pass methods

This section relates the general theory developed in the previous section to its application in Monte Carlo
rendering and multi-pass methods in general.

The integrals to be computed in global illumination, are flux values for each pixel. Chapters 4 and 5
dealt with multi-pass methods, where part of the illumination is precomputed in one or more object-space
passes. A final image-space pass uses the stored illumination to compute the pixel flux.

The combination of bidirectional path tracing (BPT), that used the self-emitted radiance, and path trac-
ing, that used a precomputed radiosity solution, was an example where different path sampling techniques
in the image-space pass could cover the same light transport. In the previous chapter, separation was used
to prevent computing some of the light transport twice, but now weighting will be used instead.

In this section we will discuss the formulation of the combined estimator and the balance heuristic in a

general multi-pass context. Section 6.4 will give a detailed example using the BPT-radiosity combination.

6.3.1 Problem statement

The pixel flux is the solution of an integral over all possible light transport paths (eg. 2.9):
| — /j(x) du(x) .
Q

Note thatl may only represent a partial pixel flux if the light transport is separated in different parts. In any
case, weighted estimators can only be applied to methods that compute exactly the same part of the light
transport. Otherwise, contributions only accounted for by one of the methods would also be multiplied by
the weights.

The domains and paths in the pixel flux integral relate to the domains and variables used in the weighting
theory. The domai®, path-space, represents the full domain, which is split into several sub-domains. Each
object-space pask)(that precomputes illumination, covers a certain part of path-sgace,

If full paths, that connect a light source with the eye, are represent&dtbgn these paths can be split
into several sub-paths

X = XXy

whereXx represents the precomputed part of the path,yaisdthe common sub-path, not precomputed by
any of thek preprocessing passes. The residue sub-@aff,is not precomputed by methddbut by at

least one other preprocessing pass. This is shown schematically in figure 6.2 (page 81).
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Figure 6.2: Splitting of a full path in a common sub-paih a precomputed sub-patty (for which the result is
precomputed into a radiance solutidfy) and a residue sub-path (precomputed by some method, but notlby
itself). The split is shown for three different methods, k2, k3), where the first does not use any precomputation, and
the other two do but over different sub-paths.

Consider, for example, a radiosity method, that precompluespaths. A general path can be split
into X;a4, being the longedtD* prefix, andy, the rest of the path. For bidirectional path tracing, that uses
no precomputed illumination, a path is split in the self-emitted radidnceresidue path that contains the

sequence of initial diffuse reflections, and a common subpd#iht is the same as for radiosity.

6.3.2 Weighted estimators

The combined estimator (eq. 6.19) is evaluated in the final pass of a weighted multi-pass configuration. For
each estimatdk, Ny pathsx_yy; are sampled and evaluated. The evaluation requires the computation of the

unweighted contributiorf / px and the weightv:

e The unweighted contributionfy(X=xy)/pk(X=kY), uses the stored information (or the self-emitted

radiance) at the end of the path, and evaluates the contribution to the image.

e The evaluation of the weight first requires identification of the common subyplaghstripping the

necessary vertices. Subsequemilyy) can be evaluated, for example, using the balance heuristic.
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The allocation of samples over the different pdfs, i.e., the choidexpfs often dictated by how the
paths are generated. For example, if path tracing reading a radiosity solution is combined with bidirectional
path tracing as was done in chapter 5, then the eye sub-paths of the latter can be reused for path tracing.
This fixes the number of samples for path tracing as soon as the number of samples for bidirectional path

tracing is chosen.

6.3.3 Balance heuiristic and evaluation

The evaluation of the balance heuristic requires the evaluation of the te(#gequation 6.20) for each

sampling technique. These terms will contain an integral over the residue domain:

_ f2(X-k.Y
Ck(Y) = / '((,7!) diﬂk .
Qy P(X-k,Y)
Itis highly inefficient to compute these integrals each time a weight is evaluated; the integrals are as complex
as integrals computed in the preprocessing passes.

Two approaches can be taken to prevent this costly integration:

e Precomputex(y) during the preprocessing passes. This can be done by separating the integrand of
ck(Y) into two parts: one part is only dependentyoand can be evaluated on the fly, while the other
part contains anything dependent on the integration variklle The latter part is integrated and

stored as an object-space solution.

e Another approach is to approximate the integral inghéerms so that some or any dependency on

X_k is removed.

The application in the next section will use both approaches to efficiently evaluate the weights.

6.4 Application: Radiosity and bidirectional path tracing

In this section the theory above will be applied to the combination of radiosity and bidirectional path tracing
discussed in the previous chapter. First we will review the multi-pass configuration (MPC) and indicate
where weighting can be usefig.4.1), followed by the actual computation of the weigli.4.2) in this

configuration, and the results obtain€@.4.3).
6.4.1 Weighted multi-pass configuration
Our MPC consists of two components:

1. The first component is standard bidirectional path tracing (BPT). This is an image-space pass, that
actually encompasses several path sampling pdfs. No precomputed storage is used, only the self-

emitted radiance of the light sources.
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2. The second component is a precomputed radiosity solution that is read by a final path tracing pass
(RADPT). The path tracing pass is performed simultaneously with the BPT pass, so that the eye-paths

can be reused.

In the previous chapter, these components were organized so that all light transport was nicely separated
between them. This required separating the direct diffuse light in order to assign indirect caustics to BPT.

Here we will use a slightly different organization:

o L. part [L ((G|S)X*E+E) = BPT]: Self-emitted radiance followed by a non-diffuse bounce is best
handled by BPT. No precomputed illumination is used anyway, and BPT generates all the paths that

path tracing would.

e LD part [LD ((G|S)X*E+E) = RADPT+ BPT]: The illumination due to direct diffuse illumination
cannot be assigned completely to one of the components. In the previous chapter, we used further

separation to solve this problem. In this chapter we will use weighting instead.

e LDl part [LDD™ ((G|S)X*E+E) = RADPT]: The indirect diffuse illumination is taken from the
radiosity solution, and BPT is not used. The expected benefits from weighting this illumination are
small, because the longer sub-pathBD ™), precomputed by the radiosity algorithm, are harder to

compute by BPT.

All path evaluations are derived from the regular expressions as described in the previous chapter.
Figures 6.6 (b), (c) and (d) on page 90 show the three separated parts of the light transport for our
example scene. For thd part (c) the weighted solution, that is discussed next, is shown. Figure (a) shows

the sum of the three components, and covers all light transport.

6.4.2 WeightingLD transport

Weighting thelL. D part requires identifying all the different sampling techniques and their pdfs, and com-

puting weights for each pdf.
6.4.2.1 Different pdfs

Figure 6.3 shows all the different sampling techniques that contribute tdxhgart for a path of length 4.
Bidirectional path tracing consists of several sampling techniggeshat construct paths up to the light
source. Only one sampling technigpgappt = Pso (tracing eye paths) is used for the radiosity solution.
These paths do not reach a light source, but end on a surface where the radiosity solution is read.

The contribution of a path is its normal evaluation, multiplied by the weight (that only depends on

the common sub-path). Thus for BPT, the light vertex must be stripped before evaluating the weight. An
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Figure 6.3: Several different path sampling techniques can sample overlapping traidpo@ $)X*E). The eye path
on the right, that uses the radiosity solution, is shorter than the bidirectional paths on the left.

Algorithm 1 Weighted combination of radiosity and bidirectional path tracing
Compute pixel:
1. Fori = 1to N samples per pixel:

(@) Sample eye path
(b) Sample light path
(c) For (s< number of eye path vertices) artd( number of light path vertices)

i. Form a path by connecting the verticeandt and compute the following evaluations
ii. Le: Evaluate [((G|S)X*E+ E)) with bidirectional path tracing (BPT)
iii. LD : Evaluate [D((G|S)X*E+E)) weighted with BPT
iv. if (t==0)
LD : Evaluate [D((G|S)X*E+ E)) weighted using radiosity solution
LDI : Evaluate unweighted contribution df@D ™ ((G|S)X*E + E))
using indirect radiosity solution

Evaluate (LD((G|S)X*E + E)) weighted with BPT (BiPath: xy, s ,t):
1. uw = unweighted contribution ofy
2. Strip light vertexx from path
3. NC=Nst/cst(Y)  /Iweight term of this technique
4. sumNC=NC
5. For all other BPT techniques,t’ and the radiosity technique
(@) sumNC+ =Ny /cyp(Y)  /lweight term of other techniques
6. weight =NC/sumNC
7. contribution =weight * uw
Evaluate (LD((G|S)X*E + E)) weighted using radiosity solution (BiPath:y, s, 0):

e This is similar to the previous function, except no light vertex must be stripped.

overview of the complete algorithm, including other, unweighted contributions and the reuse of sub-paths,

is given in algorithm 1.
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fraDPT(Y)

Figure 6.4: The path evaluation for theD part of the light transport, for both radiosity-path tracing and bidirectional
path tracing.

6.4.2.2 Computing the weights

Let x be the light vertex an§i = yp...yn be the common sub-path, for which the last veggis the eye
andyy is the vertex where the radiosity solution is used. The gwgtis a full bidirectional path.

The path evaluation for radiosity is given by (see equation 2.8):

frappT(Y) = La(Yo)G(Yo, Y1) f(gs) (Yo — Y1 — Y2) .. .- We(Yn-1 < ¥n),

with Lq the direct diffuse radiance taken from the radiosity solut®(y¢) /m). Becausel(D((G|S)X*E +E))
paths are considered, the evaluation of the first scatteripguises non-diffuse components only (for sam-
pling, any pdf can be used).

The path evaluation for a full (bidirectional) path is given by:

fBpT(X,Y) = Le(X)G(X,Y0)

> g’o) G(Yo,y1)fgjs)(Yo = Y1 = ¥2) .. -We(Yn-1 < Yn).

Only diffuse components are used for the self-emitted radibgead for the first scatter iy, and a glossy
or specular scatter iyy in order to get the correct overlapping transport. The path evaluation is illustrated
in figure 6.4. Note that we use the regular expression based path evaluation; we only have to supply the
regular expressions and the evaluations above are derived automatically.

Each sampling technique has its own weighting function for which the general expression is given by
equation (6.20). In practice the evaluation of a weighting function requires the evaluation oféferty)

for each sampling technique. The different terms that appear in our combination are discussed below. There
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is only one term for the radiosity-path tracing combination (RADPT: only 1 path sampling technique, eye

paths), but there are several for bidirectional path tracing.

RADPT term  With N the number of bidirectional paths sampled per pixel, there will al9d bge paths
that use the radiosity solution:

NrappT = N.
For a specific eye pa crapp1(Y) is given by:

o _ fRaoet(®)

CRADPTY) = — — -

) Pso(Y)

This is easily computed; it is the square of the path evaluation divided by the pdf. Both factors were already

computed for the non-weighted contribution.

BPT terms The computation of the BPT terms requires more care. Severappdése used to generate
the bidirectional paths, whesds the number of vertices in the eye sub-path fatiet number of vertices in
the light sub-path. All techniques uskesamples to estimate a pixel, except (light tracing paths that are
directly connected to the eye), that uses all palthsirfies the number of pixels) for each pixel.

The general form ofs; (Y) is given by

f2or(Xy
cxy) = [ 2T o

The integral removes the dependency on the light verte&X, covers all the light source€) = A). The
dependence of on the light vertex depends on how the bidirectional path was constructed, and more
specifically on the number of verticé$n the light sub-path. This dependency is shown schematically for
several values dfin figure 6.5.

Note that in figure 6.5 (a), verteg may depend orx, because the direction frogy towardsy; is
usually sampled according to the BSDF. For non-diffuse BSDFs this outgoing direction depends on the
incoming direction and hence on Note also that, given a fixegh andy;, the subsequent vertgy will
not depend o, because the direction towargs, determined by BSDF sampling in, will only depend
on the incident direction (frorgg to y1). Thus, figure (a) covers all cases whéere 2, and only in these
cases/; may depend om (i.e., not whert < 2).

This dependency complicates the computation of the integral over the area of the light source, because
three vertices have to be taken into accountyp andy1). Therefore, in this case, wapproximatethe
pdf for sampling the direction igp towardsys (p(y1|yo, X)) by assuming the direction samplingyig only
used the diffuse component. For a diffuse scattering the sampled direction does not depend on the incident

direction (all outgoing directions are equally important).
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Figure 6.5: The weight of a bidirectional path must not depend on the light verté&bhis dependency is removed by
an integral over the light sources (indicated by the multiple connectioAg)toThe specific integral varies with the

length of the light sub-pattt (a)t > 2, (b)t =2, (c)t =1, (d)t = 0. The dotted line indicates the connection of the
light and eye sub-paths.

Although the actual sampling may include other components, assuming the sampling of a diffuse scat-
tering is a reasonable approximation, becausesttaduationof the BSDF inyg also considers the diffuse
component only (because of the covered transport, see figure 6.4).

As a result of this approximation, all cases (itex 0) now only haveyy dependent ox. Therefore,
the integrand ofs;(y) can be split into a component only dependentjpthat can be moved out of the

integral, and a second componeg]lt(yo) that is actually integrated over the area of the light sources.

Forcg;(yo) only three different cases need to be considered depending on the light sub-path:length

e t > 1 (Figure 6.5 (a) and (b)): For this casds given by
(Le(x)G(x, o) ) )2
P(X)P(X — Yo)
When an analog simulation is used for generating the light p§$14.2.2), the pdp(x)p(X — Yyo)

dx .

e 1(Yo) = A

is proportional td_¢(X)G(X,Yo). The proportionality factor is equal to the total self emitted i
By canceling out the factors, the integral simplifies to
Cooa(Y0) = PePOl s [ Le(x)G(x,Yo) 242 ix
= O LAY 4(yp).
This factor can be evaluated easily becalug@/o) is given by the direct diffuse part of the radiosity
solution.
e t =1 (Figure 6.5 (c)):

Pd(Yo) \2
Cs1(Yo) = A(LG(X)G(SES) =

Only the pdf for generating is kept in the integral. Vertey is not dependent oxbut ony, so that

dx .

p(yo) can be moved outside of the integral. Wheis sampled proportionally to the emitted power
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of the light sourcesp(x) is proportional td_e. The proportionality factor is agae:

cha(v0) = @e | Le)G% o) (* o) 2 gy

This integral can be computed simultaneously with the radiosity computations, using a slightly differ-
ent radiosity kernel®?/T¢ instead ofG,/m) and a different diffuse reflection coefficieq?(instead

of p). Virtually no extra work is required: The visibility tests needed for computing standard form
factors are reused to compute the ‘special’ form factors for these integrals. Only some extra storage is
needed, because the partial weighting funcd’gﬂyo) is stored on the finite element mesh, together

with the radiosity solution.

e t =0(Figure 6.5 (d)): An empty light sub-path means that the eye sub-path hits a light source directly.
This sampling technique is mainly useful for light sources visible through a specular reflection. Since
a diffuse reflection is considered yi, the expected benefits of this sampling technique are so low
that we do not use it for the weighted overlapping transport (But it is used far.thart, se€6.4.1,

page 82).

The factorscg, (yo) define a partial weighting function for any positign in the scene. The part of the
weighting termss; independent ok (outside the integral) can be computed similarly to the normal BPT
weights and just need to be multiplied &y (yo)-

Once all the weighting termiss; /cs¢ are computed, the total weight of a path is evaluated using equa-

tion (6.20).

Discussion The previous paragraphs showed the derivation and the computation of weights for one par-
ticular overlapping multi-pass configuration. Before showing the results of the weighting, two remarks can

be made:

e The weighting functions are rather intricate to derive theoretically. One must take care of dependen-
cies between the vertices and study the exact form of the weighting terms to find a tractable evaluation

of the integral.

e Once the weights are derived, the practical evaluation of these weights in the implementation turns out
to be very efficient. Nearly no computational overhead and a limited storage overhead are introduced.

The evaluation of the weights is similar to evaluating the standard BPT weights.

6.4.3 Results

Recall that the total illumination in the image was split into three palts:LD and LDI (see§6.4.1).

Figure 6.6, page 90, shows the total weighted solution (a) and the three different parts (b, ¢ and d). For
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comparison, an unweighted image, witb computed using radiosity and path tracing only, is shown in
(e). Image (a) is superior due to the weighting of kliepart. This is most obvious for the indirect caustic,
also shown in the magnifications.

The LD part was computed both with bidirectional path tracing and radiosity using the appropriate

weights. Figure 6.7, page 91, shows the results of this weighting, dsamqples per pixel for each image:

e The unweighted contributions are shown in (a) for bidirectional path tracing and in (b) for radiosity
teamed up with path tracing. In (b) the direct diffuse illumination is noiseless, but the indirect caustic
on the right is quite noisy. For BPT the dimmer direct illumination suffers from more noise, but, on
the other hand, the indirect caustic is handled very well. The weights should retain the good qualities
of both approaches. Note that these images are computed simultaneously, since eye paths are reused

for the radiosity readout.

¢ In (c) and (d) theveightedcontributions are shown for BPT and radiosity respectively. These images

show that the weighting heuristics divide the light transport quite well between the two methods:

— The indirect caustic, which is best handled by light paths, is entirely computed by bidirectional
path tracing.

— The direct diffuse illumination is taken from the radiosity solution, as desired. For the direct
light on the white panel, however, BPT is assigned a larger weight. The fd¢igcy 1 is large
because there is a high probability that light paths hit the panel —the light on the panel is an
easy integral ovey— and because there dxetimes the number of pixels light paths.

— The glossy reflection of the panel in the left wall, is evenly distributed between the two methods.

This is logical, as both techniques handle the effect equally well (or badly).

These weighted images use exactly the same paths as the unweighted images, only the weighting

factor was applied.

¢ Image (e) shows the sum of the weighted contributions. This result is superior to both (a) and (b), as

the weighting preserves the strengths of both methods.

The final result (figure 6.6 (a)), is very similar to the separated result from the previous chapter (figure 5.7,

page 69), which indicates the following:

e The separation in the previous chapter was chosen well and delivered quite good results for this

example.

e The weighted combination, however, did not need the extra separation. The weighting heuristics
automatically preserve the strengths of the different methods, and adapt to other scenes for which the

separation might not perform as well.
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a) Enlarged

e) Enlarged

a)

LX*E, weighted LD = LD((G|S)X*E+E), weighted

e

LX*E, unweighted LD with RADPT) LDI =LDD™"((G|S)X*E+E), RADPT

Figure 6.6: Weighted multi-pass results. (a) shows the final result, that consists out of three parts: (b) is computed
with bidirectional path tracing only, (c) is a weighted combination of BPT and the radiosity solution (with path tracing),
(d) only uses the radiosity solution (with path tracing). Figure (e) shows an unweighted combination, where the direct

diffuse based illuminationLD((G|S)X*E + E)) is computed using the radiosity solution only. Clearly (a) shows a
much better indirect caustic.
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Figure 6.7: Weighting of the overlapping transport((G|S)X*E+E)). The weighting heuristics preserve the
strengths of the respective methods: the indirect caustic is completely assigned to bidirectional path tracing, while
the noiseless, direct diffuse illumination is taken from the radiosity solution (except for the diffuse white panel, which
is hit by many light paths in bidirectional path tracing). For features that are difficult for both methods, such as the
glossy reflection of the white panel seen in the blue wall on the left, the weight is evenly distributed so that both
methods contribute to the weighted image.
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Still some noise remains in both the images. In the blue wall, the glossy reflection of the caustic is
particularly noisy. This is because none of the sampling techniques used in this multi-pass configuration is
able to handle this effect well. In [P5] we presented a filtering technique that targets such remaining noise,

by using density estimation techniques on the image plane.

6.5 Conclusion

6.5.1 Summary

In this chapter we presented a theory for weighted multi-pass methods. This theory generalizes multiple
importance sampling for estimating integrals of different dimensions. A necessary and sufficient constraint
on the weighting functions was developed and a provably good heuristic for the weights was derived. This
theory can be applied as a variance reduction technique to multi-pass methods that employ a Monte Carlo
image-space pass. Weighted multi-pass methods do not require extreme separation, but assign (partial) light
transport automatically to the different algorithms.

The method was applied to a combination of bidirectional path tracing and radiosity, and showed that
the weighting heuristics adequately weight overlapping transport. For the same computation time, better
results were obtained with the weighted combination.

The automatic weighting is the main strength of weighted multi-pass methods: the weights can adapt to
different scenes and illumination conditions, resulting in a more robust global illumination method. While
the derivation of the weights for a specific multi-pass configuration is intricate and requires great care, the

resulting weighting heuristics can be computed efficiently.

6.5.2 Directions for future research

The weighting technique has only been applied to one multi-pass configuration. Although developing the
weights is not a trivial task, many other multi-pass configurations can benefit from the weighting technique
and should be re-investigated in this context.

Antal et al. [2], for example, recently constructed a weighted multi-pass method that combines path trac-
ing with ray-bundle tracing [108]. They use an approximate weighting heuristic that loosens the constraint,
but is still unbiased.

Another promising direction for future research is incorporatngr control in the weighting func-
tions. Radiosity methods for instance can sometimes give an estimate for the accuracy of the radiosity
solution [10], which can be integrated easily into the weights. A low accuracy (e.g., hear sharp shadow
boundaries) will lower the weight of the radiosity solution, favoring other methods for some specific part
of the illumination. Such an approach was presented in [88] by Scheel and Stamminger for final gathering.

This approach could also be incorporated into a weighted multi-pass method.
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As can be seen in the images, the important contributions of bidirectional path tracing are often very
localized. Adaptive importance sampling [29] or even Metropolis sampling, especially for the light sub-
paths, could help to spend more work on the important parts of the light transport. However, the combination

of varying pdfs with the weighting heuristics remains an open problem.



7 Path differentials

This chapter describes a new tool for global illumination algorithms: path differentials. A path is augmented
with derivatives of its vertices, directions and its evaluation. These derivatives give an estimate of the
sensitivity of the path with respect to its generating variables and allow the estimation of the footprint, the

region of influence of a path. This footprint can be useful in many global illumination algorithms.

7.1 Introduction

A path, whether traced from the eye or a light source, is a point sample in a multi-dimensional space.
Differentsampling eventsuch as sampling a point on an area light source or choosing a reflected direction,
introduce new variables, new degrees of freedom, in a path. Each path can be generated by a particular
instantiation of thespath variables

But a path is only a point sample. The evaluation of a path only takes into account the information
available at the exact location of its vertices. Consider, for example, several eye rays that are traced through
neighboring pixels and hit a textured surface. The texture is only evaluated at the location of the vertex,
resulting in aliasing artefacts when the texture frequency is higher than the density of the paths. Such
undersampling problems occur in many situations in image synthesis. In Monte Carlo image synthesis,
stochastic sampling trades aliasing artefacts for noise, but the undersampling problems remain.

Supersampling —just throwing in more samples— is a simple and effective solution to these problems,
but it is also expensive. For instance, in the texture mapping example, it might be better to filter the texture
locally around the vertex instead of tracing more eye rays, but the question is what region of the texture
should be filtered. If more information were known about the region of influence of a path, about the
distance to neighboring rays, then such a local filtering would be possible. We will call such a region of
influence of a vertex in a path informaltige footprintof a path in a certain vertex.

Several approaches have been tried to compute such a footprint (an overview is giveR)inAll
these techniques, however, only consider classical ray tracing, where a path is only determined by two path
variables, namely the image plane coordinates. Perfectly specular scattering is deterministic and does not
introduce extra variables in the path.

Path differentials provide a heuristic for computing the footprint of a path, and they are not restricted to
perfectly specular scattering. They accommodate arbitrary BSDFs, area light sources, Phong interpolated
normals, and curved surfaces. Any global illumination algorithm based on path sampling may benefit from

the information provided by path differentials.

94
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Figure 7.1: An example of footprint estimation with path differentials for a path of length three. For each vertex and
direction, partial derivatives are computed with respect to all generating variabl®tultiplying the derivatives with
a perturbation intervahuy gives differential vectors that are used to estimate the footgFint

The idea behind path differentials is based on partial derivatives and a first order Taylor approximation

of a path. With path differentials the footprint of a path is estimated as follows:

e A path is traced by sampling new directions and vertices. A new vertex or direction depends on the
previously sampled vertices and directions in the path, but may also depend on newly introduced
(random) variables. Partial derivatives of vertices and directions with respect to every variable in
the path are computed. These derivatives indicate the sensitivity of the vertex in terms of each path

variable.

e Asmall perturbation of the path variables moves a vertex over a small distance. This displacement can
be approximated by a differential: the multiplication of the derivatives with the perturbation, forming
a first order Taylor approximation of the vertex. By choosing approppettirbation intervalsthe

set of displaced vertices forms an area that we define as the footprint of the path in the vertex.
e This footprint can now be used for texture filtering or other applications.

Figure 7.1 illustrates the estimation of a footprint by path differentials for a path of length three.

The choice of perturbation intervals is very important for a good footprint heuristic. Large intervals
result in large footprints, that do reduce noise or aliasing, but that also introduce bias or blurring in the
solution. A very small footprint, however, will not sufficiently reduce the noise. We will explore several
heuristics based on the number of paths traced, the rate of change of the path evaluation over the footprint,
and the second order partial derivatives. These heuristics combined ensure an adequate coherence over the
footprint and a good noise versus bias trade-off.

Path differentials can be used in many global illumination algorithms. We have used the footprint for

filtering textures locally on surfaces. We also used it for a hierarchical refinement oracle in particle tracing
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radiosity and applied it to importance calculations in photon maps (see chapter 8). Many other applications
are still possible, and we will discuss a few at the end of this chapter.

The rest of this chapter is organized as follows: Related work that tries to extend paths with some
kind of footprint information is discussed i¥.2. A general definition of a footprint is given §v.3.
How to approximate the footprint with partial derivatives is discussed . The footprint approximation
requires the computation of partial derivativég.6) and perturbation interval heuristics to determine a
small neighborhood around a point sample in the path donmgi6). Two applications are presented,
texture filtering §7.7) and hierarchical particle tracing radiosity’ 8). A conclusion, along with some
other possible applications and extensions, are givéi.B&. An appendix at the end of the chaptgf.f)
presents some additional technical details about computing path derivatives.

We have presented path differentials previously in [P8] and [P7]. This chapter presents a more in-depth
discussion of path differentials, with a more rigorous definition of the path footprint. Also, the work on

second order derivatives is new.

7.2 Related work

This section gives an overview of existing techniques that try to exploit coherence in the neighborhood of
a path by tracking some kind of footprint. Three main categories can be identified: extension of a path
to a finite size §7.2.1), tracking connectivity between neighboring pat%2.2) and differential tech-

niques §7.2.3). Our method belongs to the the last category.

7.2.1 Extension of a path to a finite size

A first approach, most popular in the early days of ray tracing, extends infinitely thin rays to a finite size.
The differences between these techniques lie in the representation of the extended ray, the intersection

computations, and the way reflected and refracted rays are traced.

Beam tracing In’'84, Heckbert proposeldeam tracing42]. A ray is extended to a beam with a polygonal
footprint. The scene is rendered starting with a single pyramidal beam using the eye as the top and the screen
as the rectangular base. Intersection is performed by clipping the beam against all the polygons in the scene.
The beam is fragmented by the visible portions of the intersected polygons. A perfectly specular scattered
beam is formed by the polygonal footprint and a new, mirrored center for the beam.

Lighting calculations can be performed coherently over the footprint of the beam (Heckbert used a ras-
terization algorithm over the footprint), which, for example, resolves aliasing due to undersampled textures.

Beam tracing is limited to polygonal scenes only. Only perfect specular reflection and refraction are

supported, and even then the refracted beam is approximate due to the non-linearity of refraction. Inter-
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section calculations require a robust, general clipping procedure and are difficult and time consuming for

complex scenes.

Cone tracing A similar techniquegone tracing was presented by Amanitides et al. [1], and extends a

ray to a cone. The intersections of the cone with objects in the scene determine, or better approximate,
the fraction of the cone that is intersected by the objects. This fraction is used for anti-aliasing over the
footprint. The cone is fragmented by the intersected surfaces, and reflected cones are traced. By widening
the cone angle, glossy reflections can be simulated. Soft shadows were also simulated by tracing a cone

from the (point) light sources.

Pencil tracing Pencil tracing proposed by Shinya et al. [90], extends a ray to a set of paraxial rays.
Propagation and scattering are approximated by a linear system matrix, that provides a theoretical basis
for these operations. However, scattering and even propagation of a ray using the system matrix are only
approximate. To circumvent difficult intersection tests, the pencil is only used when its intersection is
contained completely in a single surface. When a pencil crosses an object boundary and hits several objects,
the method resorts to plain ray tracing. Clearly, this is prohibitive for complex scenes, containing many

small primitives.

Pyramidal rays An approach similar to beam tracing ugggamidal rays[31]. These pyramidal rays

are beams with a rectangular footprint. Intersection splits the ray hierarchically to determine visibility up

to a predefined threshold, similar to the Warnock hidden surface removal algorithm [127]. Intersections are

thus simpler than with beam tracing, that uses a Weiler-Atherton clipping algorithm [128] to compute the

visible parts of the polygons exactly. Therefore, pyramidal rays are able to handle complex scenes better

than beam tracing, but require a finer fragmentation of the rays in order to resolve the visibility accurately.
Reflection is done similarly to beam tracing, with inclusion of blurred reflections by widening the pyra-

mid and fragmentation of the pyramid on curved reflectors.

Wavefront tracing Elber approximates light wavefronts emitted by a point or spherical light source by

a parametric surface that moves forward with time [30]. The wavefront is reflected by a (single) free-form
surface. Irradiance in a point is given by the Gaussian curvature of the wavefront at that point. This method
was only demonstrated for direct lighting from a single light source on a simple surface. For complex

scenes the reflection (and fragmentation) of the wavefront becomes difficult.

Conclusion All these extended ray methods suffer from two important disadvantages:

e Intersection calculations are intricate and time consuming: the intersection of a ray extended to a
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geometric primitive (beams, cones,) with an object in the scene is much harder to compute than an
intersection of an infinitely thin ray. Therefore, these methods only handle relatively simple scenes.
For such simple scenes, however, these methods work well, since visibility coherence is exploited
well by the extended rays. For infinitely thin rays, on the other hand, highly optimized and simple
algorithms exists for intersecting them with a great number of different types of objects, so that many

rays can be traced for the same cost as a single extended ray.

e The methods only handle perfectly specular reflection and refraction. Even for these simple BSDF
models, some methods require approximations. Glossy reflection is supported by cone tracing and

pyramidal rays using a trick that widens the ray footprint.

Extension to other, more general BSDFs is difficult. Reflection and refraction cannot be represented
by a single extended ray, so several scattered beams, cones or pencils should be traced. One approach
to this problem would be to decouple lighting and visibility calculations. For example, reflection
could be computed by tracing a beam that encompasses the complete hemisphere and by fragmenting
this ray based on object visibility. Since visibility is completely resolved with respect to the ray’s
origin, lighting computations can be performed coherently over the visible portions of the object
surfaces. Such an approach is taken to the limit in global visibility methods, such as the visibility
skeleton [26], wherall visibility relations between objects in the scene are resolved analytically

(without sampling). Again, these methods are limited to relatively simple scenes.

7.2.2 Tracking path connectivity

Another approach to compute information about the neighborhood of a path is to explicitly maintain con-
nectivity information between the neighboring paths.

Collins uses such an approach to construct caustic texture maps [23]. With standard ray tracing he
constructs light paths that are splatted into a caustic texture map. A (Gaussian) filter kernel is used to
distribute the power of a light path vertex over several texels in the caustic texture. For all starting rays,
emitted from a point light source, a pointer is kept to the four neighboring starting rays. This connectivity
is tracked during propagation and scattering of the light path. The splat size is determined by the distance
to the vertices of neighboring paths: When neighboring paths are far away, the density of paths near the
vertex is low, and a larger splat size is used. The footprint of a ray is thus estimated by the distance to the
neighboring paths.

This approach requires only a simple extension of classical ray tracing, namely tracking the neighbors,
and leaves intersection tests unchanged. It works well when neighboring rays follow the same path and have
the same ray tree (i.e., when the same objects are hit by corresponding vertices in the neighboring paths).

The connectivity is lost, though, when the neighboring rays hit different objects, resulting in different ray
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trees. Using arbitrary BSDFs and Monte Carlo path sampling is possible in theory, but the stochastic
sampling often results in different scattered directions for neighboring rays. This leads to highly diverging

ray trees, limiting the usefulness of the connectivity information.

7.2.3 Differential techniques

Differential techniques differ from the previous approaches in that they keep considering an infinitely thin
path. Any information about a path’s neighborhood or its footprint is derived from the path itself, avoiding

difficult intersection tests or divergent ray trees.

Differential geometry A first approach tracks local properties of the light wavefront along a path using
differential geometry techniques. Mitchell and Hanrahan use differential wavefront tracing to compute
caustics from curved reflectors [74]. Caustic paths (or Fermat paths) are found by minimizing the optical
distance traveled by a path from a point light source over a specular reflector to a target illumination point.
Once such a path is found, a differential wavefront is computed along the path. The Gaussian curvature of
the wavefront gives the caustic intensity at the target point.

Wavefront tracing was also used by Loos, Slusallek and Seidel for the design of progressive lenses [71].
Reflection and refraction were considered to be perfectly specular. Although differential geometry is well
studied for specular reflection and refraction [106], it is unclear how to extend this work to sampled BRDFs

and full global illumination.

Path derivatives A different approach, not relying on differential geometry and wavefront properties,
uses partial derivatives of paths.

Chen and Arvo propose a method to efficiently compute perturbations of specular paths [17, 16, 15].
Specular paths are paths that only account for perfectly specular scattering in the intermediate vertices. The
perturbations are computed using a second order Taylor approximation of a path. Starting from a sparse set
of sampled paths, the remaining paths in between are computed by perturbation. They present two appli-
cations: an efficient computation of specular reflections for implicit surfaces and the direct computation of
iso-lux contours for caustics. While good results are obtained, the method is currently limited to perfectly
specular paths only and an automatic choice of an appropriate set of sparse samples is not obvious.

Arelated approach, proposed by Igehy [44], computes ray differentials. In a classical ray tracing setting,
an eye path only depends on the image plane coordinates of the path. Any other vertex or direction is directly
determined by these coordinates by ray transfer and perfectly specular reflection or refraction.

Igehy computes partial derivatives of the vertices and directions with respect to the position on the image
plane. These derivatives give the sensitivity of a vertex or direction in terms of the image plane coordinates

and are used to approximate the footprint of a pixel in a path vertex. Since the differentials are based on
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simple calculus, derivative procedures for pixel sampling, perfectly specular reflection and refraction are
easily obtained from the original sampling procedures.

The ray differentials are applied to texture filtering. Instead of using supersampling to reduce texture
aliasing, the texture is filtered locally on the surface over the pixel footprint (without the need to trace more
paths). Since the vertex derivatives take into account minification or magnification of textures (due to the
lens-like effects of reflection and refraction), the use of the pixel footprint delivers a very adequate texture
filtering.

The use of standard calculus for path derivatives forms the main strength of ray differentials (and spec-
ular path perturbations). It easily adapts to complex scenes even with non-physical properties such as
interpolated surface normals.

Path differentials extend ray differentials to arbitrary scenes including sampled BSDFs and area light
sources. Therefore, path differentials are applicable to any global illumination algorithm based on path
sampling. The problem dealt with by path differentials is inherently more difficult because a path is de-
pendent not just on the image plane coordinates, but on many other variables introduced while sampling
vertices and directions in a path. Path differentials must take into account the full dimensionality of the
global illumination problem. This requires an extension of the notion of a footprint —it's not merely the

pixel footprint—, and new derivative procedures.

Conclusion Differential techniques have the advantage over path extension that a ray remains a point
sample. The robust and efficient intersection tests developed for ray tracing need no change for the differ-
ential techniques. This explains their better handling of complex scenes. Point samples, on the other hand,
ignore visibility changes over the estimated footprint. While this may result in blurring or some artefacts,
the handling of complex scenes largely outweighs this limitation. This is why ray differentials have been

adopted rapidly in commercial rendering systems.

7.3 Footprints for local variance reduction

This section gives a general definition of a footprint of a path in a full global illumination setting and gives

an overview of the footprint approximation using path differentials.

7.3.1 Paths as a function of unit random variables

Tracing paths involves the sampling of new vertices and directions. A newly sampled vertex or direction
depends on the previous vertices and directions in the path and possibly on some new variables. Figure 7.2
illustrates the sampling of a short light path. The first vertex in the pathis a point chosen on the light

source. For an area light source, the vertex is generated by a 2D sampling event using vagjables
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X1(Ug, Up)

w12(U1, U2, U3, Ua)

wp3(Uy, U2, U3, Us, Us, Ug)

X2(Ug, Uz, Uz, Us)

Figure 7.2: Each vertex or direction in a path is a function of a number of path variables. For this light path, two
variables determine a vertex on the light source. Two extra variables determine the direcbgnand so on.
Then a new directio > is sampled according to some angular distribution function. This is again a 2D
sampling event, introducing variablas, us, that, for example, determine the azimuth and elevation angles
for the new direction. The vertex is found by tracing a ray from; in the directionw . This does not
introduce new variables, as the new vertex is uniquely defined bydw;,. The new direction,z again
introduces new variablas;, us and so the tracing of the path continues.

As such, each vertex or direction in a path can be seen as applying a function to the generating variables.
We define §' as a function that generates a vertex in a path, das the corresponding function that

generates directions in a path:

X1 = g(U,U),
w2 = h(Xq,us,us) = h(ug, Uz, Uz, ug),

(7.1)
X2 = 0(X1,012) = g(Uz,Uz,U3,Ug),

A flexible definition for the functiong andh will be adopted: they can take any number of variables as

parameters, but also other vertices or directions. The exact definition will be clear from the notation used.
Without loss of generality, we choose the unit interval as the domain of all the variablda this

caseg andh represent a mapping froff, 1]M to R3 (object-space) an@.;; (directions) respectively, with

M the number of variables in the path. This choice maps nicely to Monte Carlo sampling: When paths

are generated stochastically, importance sampling is used to transform uniform random numbers in the

unit interval to a desired distribution. The variablgsrepresent these random numbers that are used in

importance sampling.

In general, the path generation functions map a single point iMtdgmensional unit hypercube to a
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Figure 7.3: An example of exact footprints in classical ray tracing. A neighborhood around the starting ray is projected
onto the first planar surface as a quadrilateral. All the reflected rays hit the curved surfaces, forming a curved footprint.

vertex or direction in the scene:
g:[0,1M - R3: x =g(u), (7.2)
h: [0, — Qur: w=h(u), (7.3)
withu = [ugup...um]"

Since a vertex consists of three coordinage@ndh) can be split into three componems g, andg,: one

function for each coordinate.

7.3.2 Footprint definition

Until now we have used the terfootprint intuitively as a certain region of influence around a vertex. In
this section we will give an exact definition of what we mean by a footprint.
Let x = g(u) be a vertex in a path. Consider for each varialglén u a certainperturbation interval

Auyg. For any perturbatiogy € [—Auy/2,Auy/2], the vertexx moves over a small distance:
X+ 0xXk = g(U1,...,Ux+ €k, ..., Um) -

Given a perturbation intervaluy for each variabley, the footprint¥ in x is defined ashe set of all vertices

that are reachable from by a perturbation within the given perturbation intervals:
F={y=9(\V)|vk=1...M: |vk — U] < Au/2}. (7.4)

In other words, the perturbation intervals define a finite neighborhood aroimthe domain of the path
(an M-dimensional unit hypercube) This neighborhood is projected to a set of vertices in object space by
the path generating functian This set of vertices forms the footprint, that relates a neighborhood in the

domain with a neighborhood in object-space.
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In figure 7.3, a simple example is shown for classical ray tracing. Two variables determine a position
on the image plane, for example the center of a pixgl. A ray is traced and hits a surface xa. A
neighborhood in the variable domain determines a rectangle on the image plane around the sampled position
X pix (€.9., the complete pixel). The projection of this neighborhood determines a quadrilateral on the surface
in x1. The perfectly specular reflection does not introduce extra variables and the footprint is transferred
along the reflected ray. The reflected ray hits a curved surfacg nesulting in a curved footprint.

Equation (7.4) gives a very general definition of a footprint that gsesdetermine all the points in the

footprint:

e Afootprint can consist of disjoint parts, for example when there is a change in visibility near the path

that splits the footprint.

e The footprint can be non planar, for example for vertices that lie on a curved surface. The footprint

will follow the curvature of the surface.

In general the exact footprint is very hard to compute, and approximations need to be made. The previous
section,§7.2, summarized some previous approaches to compute the footprint, but these were limited to

perfectly specular scattering.

7.3.3 Overview of footprint estimation using path differentials

Path differentials, developed in this chapter, provide a first order Taylor approximation of a footprint that is
easily computed for complex scenes with arbitrary material properties.

For the Taylor approximation, partial derivatives of the path vertices (and directions) are computed for
each variable in the path. The magnitude of the partial derivative determines the sensitivity of the vertex in
terms of the variables. Multiplying the derivatives with the corresponding perturbation intervals results in
the differential vectors, from which the footprint will be constructed.

A very important choice when computing footprints, is the size of the perturbation intéwialsThe
intervals should be small enough to ensure coherence of the illumination contributions over the footprint.
On the other hand, the intervals should be large enough to enable an effective anti-aliasing or variance
reduction, for example by filtering textures over the footprint.

Algorithm 2 (page 104) gives an overview of the footprint computation when tracing paths. In the
following sections, we will detail each aspect of the footprint computation: The mathematics behind the
first order Taylor approximation and a convenient representation of the footprint are gi§@minThe
details on the computation of partial derivatives are givefi7/its. Suitable heuristics for the perturbation

intervals are proposed §7.6.
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Algorithm 2 Estimation of the footprint using path differentials

1. Trace a patix
2. For each vertex; in the path (depending dvl variablesu):
(a) Compute all partial derivative%yﬁ) (§7.5)
(b) Determine appropriate perturbation intervalg for this vertex (sectior§7.6)
(c) Compute the differential vectoes %Auk
(d) Estimate the footprint using the differential vecto§s.4)

3. Evaluate the contribution of the path, using the footprint for anti-aliasing or noise reduction (Appli-
cations §7.7 and;7.8)

7.4 Footprint approximation using partial derivatives

This section develops a footprint approximation based on a first order Taylor expansion. The theory will be
given for the footprint of a vertex in a path. For a direction a similar derivation can be givenhusistgad

of g.
7.4.1 Differential vectors

The footprint was defined in terms of vertex perturbations (Eqg. 7.4). These perturbations can be estimated
using a Taylor expansion of

Givenx = g(ug,...,um), a small perturbatioey applied to a variable, moves the vertex over a small
distance:

X+ 0xk =g(U1,...,Ux+ E;,---,Um) -
This change can be approximated using a first order Taylor expansion:

09(ug,...,Ug,...,Um)
auk

Xy ~ €k .-

The magnitude of the partial derivative determines the sensitivity of the vertex in tetgpsfofarge partial
derivative means that a small change in the variable results in a large displacement of the vertex.
For a general perturbatia= [¢3,...,eu] " that changes several or all the variables, the displacement

of &x is given by:

i < dg(u)
X=Y Xy~ k.
kZl kZ:L U

This perturbation can be written concisely in terms of the Jacobian matgx of

OX = J(g(uu)>£,
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(@)

Figure 7.4: Each path vertex has several differential vectors lying in the same fdan&hese vectors can be used to
approximate the footprint of a path. By transforming to ¥he Y plane(b), the polygonal footprint approximation can
be constructed by combining the vectors in a particular ofderA good approximation is given by vectofs\ and
AB.

whereg is a vector of lengttM and the3 x M Jacobian matrix is defined as

9« (u) 09(u)
ouyg T oupm

J<g(U)) 0 agy (u)
u - oug e oupm

99, (u) g, (u)
ouyg the oupm

The set of vertices + 0x that can be reached by perturbations within the supplied perturbation intervals,
forms the first order Taylor approximation of the footprint defined in equation (7.4).
If we consider only the perturbations of a single varialges [—Auk/2,Auy/2], the set of perturbed

vertices forms a line segment centered around the va&rt&kis line segment is given by the vectxy:

ag(U]_,...,Uk,...,UM)

Axg =
k auk

Au .

The vectord\xy are called thalifferential vectors For each of the variables, such a differential vector can

be constructed.

7.4.2 From differential vectors to footprint

In §7.5.2 it will be shown that the partial derivativ@%i—) are all tangent to the surface xnand, conse-
quently, that all differential vectors lie in the same plane. These planar differential vectors can be used to
construct a footprint approximation. This is shown in figure 7.4.

Any possible perturbatior’ (within the perturbation intervals) of a vertecan be written as a linear

combination of the differential vectors:

M M
! __ — ~
X =X+0Xx= x+k;6xk ~ x+k;ykAxk,
whereyi € [—0.5,0.5] since the footprint is centered arouxd
The area defined by a combination of a number of line segments is given by the Minkowskibsum (
of the line segments. Thus, the footprint approximation is given by the Minkowski sum of the differential

vectors:

M
Fx = @Axk ={x'= kZlykAxk| —05<y<05}.
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When only two variables determine a path, as is the case in the classical ray tracing setting used by
Igehy [44], there are only two differential vectors. The footprint is then given by the parallelogram formed
by the two vectors.

In general the Minkowski sum is a polygon wigM edges. Each differential vector appears twice as an

edge. This polygon can be constructed as follows (see figure 7.4):

e The differential vectors all lie in the same plane perpendicular to the normahird are centered

aroundx (Figure 7.4 (a)).

e In a first step, transform all vectors to tike— Y plane. The vectors start in the origin and point

towards the positiv¥ direction (Figure 7.4 (b)).
e Sort the vectors according to the angle made withXkeis. (Figure 7.4 (b), dotted arrow).

e The first half of the polygon is constructed by adding the vectors one by one in the sorted order. The

resulting poly-line reaches the top of the polygon (Figure 7.4 (c), solid lines, purple).

e The remainder of the polygon is formed by subtracting the vectors, again in the sorted order, starting

from the top (Figure 7.4 (c), dashed lines, purple).

Since each sampling event, such as light source sampling and reflections, can introduce two new variables,
the total number of variabledl can become large for long paths. The footprint, which Blslsedges,
becomes impractical for more thatdifferential vectors. To perform operations such as texture filtering
over the footprint, a convenient representation is needed. Therefore, we compute two representative vectors
AA and AB that give a good approximation of the covered area. The construction of the representative

vectors is also shown in figure 7.4 (c):

e LetT be the top of the polygonal footprint. is the sum of all differential vectors.
e Construct a vectoPT perpendicular td'.

e AA = the sum of all differential vectorAxy that comply toAxy - PT > 0. This gives the rightmost

vertex of the polygon (or leftmost, depending on the directioRDY.
e AB=T-AA

Constructing the representative vectors processes all differential vectors twice: Once for comarithg
a second time foAA. No sorting is needed for computing the sums, making the construction a linear
operation in the number of differential vectoM ectors).
The parallelogram formed YA andAB (Figure 7.4 (c), cyan) is inscribed in the footprint and provides
a conservative and convenient estimate of the footprint of the path ihcoherence is ensured over the

footprint, it will also be ensured over the (smaller) parallelogram.
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Thus, if we can compute all the partial derivatives and find suitable perturbation intervals, we can

estimate the footprint with the above procedure.

7.4.3 A footprint based on convolution

We defined a footprint as the projection of a small neighborhood in the path domain by the path generation
functiong. All points reachable around a path vertex by perturbations within the given perturbation intervals
are part of the footprint.

Other footprint definitions are possible and an interesting alternative uses convolution:

e Assign a certain filter kernel to each perturbation intedval. A box filter, for example, would
assign an equal weight to the center and the endpoints of the interval. A Gaussian filter assigns a

larger weight to the center.

e The resulting filter for the full neighborhodkl around a sample in the path domain, is given by the
convolution of the separate interval filters. While this filter could be evaluated by explicitly sampling

and weighting several samplesthe filter can also be approximated using the differential vectors:

— For a single perturbation interval, a corresponding filter can be defined over the differential

vectors. The box or Gaussian is stretched over the length of the differential vector.

— The convolution footprint is approximated by the convolution of the filters over all the differen-

tial vectors. The convolution footprint defines a new filter locally around a path vertex

Gaussian filters might be interesting to use with a convolution footprint: The convolution of each pair of
differential vectors forms an elliptic Gaussian around the vertex. Since the convolution of elliptic Gaussians
is again an elliptic Gaussian [39, p.55],[6], an exact convolution could be computed.

Such a convolution footprint could be useful for the texture filtering application that we will present

further on. For our other applications a convolution footprint is less useful.

7.5 Computing partial derivatives

In this section the actual computation of the partial derivatives of vertices and directions in a path will be
discussed.

Tracing paths involves the sampling of new directions and vertices. For stochastic sampling, importance
sampling is used to generate directions and vertices according to some probability density function (pdf).
For each procedure, each sampling event, that computes a new vertex or direction, a partial derivative
procedure must be developed.

Consider for example a scattering event that generates a new direttidn general, this direction

depends on a previous vertex and direction (if these exist) and on two new variab)aatfoduced in the
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Figure 7.5: Partial derivatives for Phong lobe sampling.has derivatives for previous sampling variablgsut also
for new variablesi, v from BRDF sampling.

2D sampling event:

o =h(w,x,u,v).

Partial derivatives oty can be computed by simply derivirigfor all previously introduced variablasg

and the new variables,v. Sincew andx depend on the previous variableg the partial derivativeguﬂk

anda"TXk were computed before and can be used to compute the new patrtial deri\gﬁkﬁwesing the chain

rule for derivatives of nested functions [86]. Figure 7.5 illustrates the sampling of the new direction, and
the partial derivatives that must be computed for a Phong lobexpidf~ cos’a).

Other relevant sampling events in path generation are pixel sampling, (ray) transfer and light sampling.
We will briefly discuss each event and the corresponding derivatives below. Detailed information on the
derivative computation for these events can be found in the appe&j¥d&)( In this overviewx denotes the
previous vertexe the previous directions’ a newly sampled vertex, and a new direction. Variables,
denote variables introduced in previous sampling events, whiledv are new variables for the sampling

event under consideration.
7.5.1 Pixel sampling

Pixel sampling occurs when tracing an eye path. Let the initial vesgenf the path be the eye Pixel
sampling generates a ray directi@hbased on a (randomly) chosen point in the pixel. Computation of the

two derivatives oty is straightforward and given in the appendix (A).
7.5.2 Transfer

Transfer computes a new vertex in a path by tracing a ray from the previous xéntéhe directionw. The

new vertex is given by

X' =rc(X — w) = X+tw,

with t the traveled distance to the new vertgkdepends o andw, but no new variables are introduced.
The partial derivatives are given by

ox’ ox Jw ot

Ouc  Quc  ouc  duk

7

1\We assume a pinhole camera model. Otherwise, the generation of the initial eye vertex is already a sampling event that generates
a vertex on the aperture of the camera.
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with
ﬂ_ (auk—Hauk) Ng

3

whereNy is the geometric normal of the surfacexin(see§7.A for more information).

Some interesting properties about these derivative expressions are the following:

e The expressions show that the partial derivatives afre easily computed from the previously com-

puted derivatives of andw.

e The resulting derivative% are perpendicular to the geometric normakin

0
0uk Ng = (TL)J(k+ ) N9+6uk(w'N)
_ [5) 0 0
- (TL),(k+taT(:;)'NQ (aukthaS;:) Ng

This means that all partial derivatives of a vertex generated by tracing a ray are co-planar. This

property was used when constructing the footprint from the differential ved{6:4.2).

7.5.3 Scattering

A scattering event generates a new direci@ngiven a directionw incident in a vertexx. Usually the
pdf for direction sampling is chosen proportional to the BSDF or, even better, the BSDF times the cosine.
Partial derivatives of the resulting importance sampling procedure must be computed, both for previous
variablesu, and new variables andv.

An example for a glossy Phong BRDF was shown in figure 7.5. The new directisdistributed

according tocos’a around the perfectly reflected directia. Sincew’ depends omor, andwg depends

o]

' u, can be different from zero. The new derlvatl\/%% depend on the specific importance sampling

onw
procedure. For Phong lobe sampling, the derivatives are given in the appg&naix (
As an illustration, we will show a simpler case where the new direction is sampled uniformly over the
hemisphere. The importance sampling proceduire h(u,v) for uniform direction sampling is given by:
¢=2m, cosB=1-v with u,v e [0,1],
oY = h(u,v) = (cosp sinb, sind sinB, cosh) .
The derivatives are easily computed from this procedure:

0w _ 94 9 _ (_pmsing sin, 2rcosp sinG, 0)

u = 9 ou
aa‘*\f 0060&;((6) —1 = (cosp cosB/sinb, sind cosB/sinB, —1),
where we have useffind — 2100 _ _ coqp)/sing.

The partial derivatives are perpendicular to the new direatipmvhich can be shown by computing the dot
product ofw’ with the derivatives. This means that all derivatives of directions are co-planar. Similar to the

computation of the footprint for a vertex, a footprint for a direction could be computed.
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Note that for the special case of perfectly specular reflection or refraction, the outgoing direction is de-
termined completely by the incoming directiarand the vertex, so that no new variables (or derivatives)

are introduced. This special case was already handled by Igehy in [44].

7.5.4 Light source sampling

When light paths are constructed, a starting point must be chosen on a light first. Then a light direction is

sampled. Again, the derivatives are easily computed from the specific sampling procedure (AgpaXdix
7.5.5 Other sampling events

Any other sampling event that is not covered here (e.g., scattering in a participating medium) can usually be
derived simply from the sampling procedure. This is the advantage of using simple calculus (for example,
instead of differential geometry) to compute the footprint approximation.

Some sampling procedures, however, use rejection sam@gi#n2.8.2). In rejection sampling a higher
dimensional sample is generated and tested for acceptance. It is not possible to simply differentiate such
a procedure. While it might be possible to develop derivative procedures in another way, based on the pdf
itself instead of the sampling procedure, we have not closely investigated this issue because all common

sampling procedures in rendering can be performed without rejection sampling.

7.6 Choosing perturbation intervals

In the previous section it was explained how partial derivatives can be computed for different sampling
events. These derivatives constitute one factor in the differential vectors that make up the footprint. The
other factor is given by the perturbation intervals. This section proposes several heuristics for choosing the
perturbation intervals.

Recall that the perturbation intervalsiy determine a small neighborhood around a paiirh the M-
dimensional domain af(u). The footprint is the projection of this neighborhood into object space through
the path generation functiay{u).

The choice of the perturbation intervals directly influences the size of the footprint. Therefore, these
intervals should be chosen in such a way that coherence is ensured over the footprint. For example, in a
texture filtering application, a large footprint will blur the texture seen in the image, while a small footprint
will not reduce the noise.

There are several factors that can be taken into account to determine appropriate perturbation intervals:

e Number of samples : The number of samples determines the density of the samples in the path

domain. A higher density means that the distance between neighboring samples will be smaller. We



CHAPTER 7. PATH DIFFERENTIALS 111

use the number of samples to estimate the expected distance to neighboring samples and use that

distance as the perturbation intervér 6.1).

e Path contribution : In our applications we consider the contribution of a path to be constant over
the footprint. This approximation breaks down when the contribution changes too much over the
footprint. In§7.6.2 we will compute theath gradientand use it to limit the size of the perturbation

intervals when the gradient is too large.

e Second order derivatives :The second order derivative indicates how well the first order derivative,
the tangent vector, approximates the perturbation of the vertex. This can also be used to determine

the intervals §7.6.3).

¢ Visibility : Since the footprint is based on derivatives of a point sample, visibility changes near
the sampled path are ignored in the footprint. This could violate the coherence assumption of the
footprint. Currently we do not use visibility to determine perturbation intervals. How visibility could

be incorporated into the footprint estimate is discussed if.

In practice we use a combination of the heuristic based on the number of samples, the path gradient and the

second derivative$7.6.4).
7.6.1 Number of samples

The heuristic based on the number of samples chooses intéwatbat correspond to the expected dis-
tance to a neighboring sample (i.e., the closest saffuple..,un) differing only in uy). Multiplying the
intervals with the corresponding partial derivative results in differential vectors that approximate the ex-
pected distance to a neighboring path. For example, after sampling a diffuse reflection, differential vectors
will usually be larger than after sampling a glossy reflection, because the partial derivatives are larger while
the deltas are the same. The rays get ‘spread out’ more by the diffuse BRDF.

This heuristic is also used by Igehy in ray differentials and, in a slightly different setting, by Collins
when the distance to neighboring rays is tracked explicitly. They used classical ray tracing, which only
requires estimating the distance to neighboring samples in the image plane or neighboring samples for rays
sent out by a point light source. For arbitrary path sampling all dimensions in the path domain must be
considered to determine a neighboring sample.

We distinguish two cases, local intervals and global intervals. Recall that each vagjdids a unit

interval domain, which will facilitate the choice of intervals.
7.6.1.1 Local intervals

Local intervals chooséuy based on the number of samples that were used in the sampling event that

introduced the variable.
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For example, if N samples per pixel are traced, these samples are distributed over the unit square, intro-
ducing two variablesi; anduy. Au; andAu, should be chosen as an approximate distance to a neighboring
sample. For regularly spaced samples this distantéy@N for both intervals. We have found this distance
to be useful for stochastic sampling also.

If extra information about the sampling process is known (e.g., nonuniform stratification), different
values forAu; andAu, may be better.

Suppose that, after pixel sampling, the path is continued and a scattering event takes place. For scattering
(another 2D sampling event) a splitting facdfrdetermines how many scattered samples are spawn. Again
we choose the interval size to tig/N’. If many samples are spawn, the corresponding differentials will
be smaller.

Similar intervals are used for other scattering events.
7.6.1.2 Global intervals

The local intervals do not work well for path tracing (or light tracing) that uses a large number of samples
per pixel, but only a single sample for scattering.

In this case, we consider the compléfiedimensional domain (a unit hypercube), and consider the
samples to be spaced evenly over the domain. An estimate of the distance to a neighboring sample in one
dimension is now given by/ ¥/N. All Aug are chosen equal. Longer paths will have larger intervals, as N
samples have to be distributed over a higher dimensional domain.

It is also possible to incorporaiRussian roulettean unbiased way to limit the length of patl§8.3.4),
into this approach. The absorption probabilitigsused in each vertex, are accumulated along the path,
and intervals are computed 29/ ¥/N x ]; P (xi). Thus the number of samples for ‘this kind of path’ is
decreased by the absorption probabilities, and intervals grow larger. This accounts for the decrease of path
density in an infinitesimal neighborhood around the sample point

This approach works well for path tracing and particle tracing as will be demonstrated in the applica-
tions. However, we observed that longer paths tend to have large intervals, due to the ‘curse of dimen-
sionality’: The number of samples per dimensid{fN, becomes very small for largé. Therefore, we

developed additional heuristics based on the path gradient and the second order derivatives.

A note on adaptive sampling Both the local and global interval heuristics assume that the total number

of samples is known beforehand. Special care must be taken for adaptive sampling. Adaptive sampling
starts with a small batch of samples and increases the number based on the observed variance of the sam-
ple contributions. Using the small, initial number of samples in the interval heuristic may cause a large
footprint, leading to a small variance but a large bias. Due to the small variance, adaptive sampling would

decide the estimate is accurate enough and would not increase the number of samples enough, leading to a
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Figure 7.6: Symbols used in the derivation of the path gradient.

strong bias in the solution. Therefore, in adaptive sampling the interval heuristic should use a larger number
of samples, for example the maximum number of samples that would ever be used by the adaptive sampling

procedure.

7.6.2 Path gradient

In this section the path gradient will be developed. The path gradient is a vector of partial derivatives of
the path evaluationwhich is a function of a path that determines the contribution to the quantity (e.g., the
pixel flux) that we want to compute. The derivatives give the rate of change of the path evaluation when
perturbations are applied. The path gradient will be used to estimate perturbation intervals: a large gradient
means that the evaluation changes rapidly and that small intervals should be used.

The technique is presented for eye paths, but it is equally applicable to light paths. First we will discuss
the path evaluation functio§7.6.2.1), then the computation of partial derivativis.6.2.2) and a heuristic
for choosing the perturbation interval$7(6.2.3). Implementation issues are giver§ih6.2.4 and some

additional discussion is provided §7.6.2.5.
7.6.2.1 Path evaluation

The light flux reaching the ey through a pixel is given by the following measurement equationy242:
|pix = o We(XQ — (nl)Li(Xo — (01) d&)l.
pix
The unknown radianck; can be expanded by tracing a rayxpand substituting the radiance transport

equation 2.1 (The symbols used are explained in figure 7.6):

Iix:/
P Q

We(Xo — ) |:|—e(X1 — 1)+

pix

/Q fs(X1, 1 — wp)) (N1-w2)Li(X1 — w2) dw2 | dws .
ATT
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Again the unknown radiandg can be substituted by the radiance transport equation. Each new scattering
introduces a BSDF and a cosine factor in the integrand. To simplify notation, we introduegetimath
evaluation functionfrgw) that contains the product of the self-emitted importance and all the BSDF and
cosine factors for a path of length The full evaluation of a patk with a length of at least can now be
written as:

£(%) = £ (X0 — na1) - Li (Xn < @nya).- (7.5)

The functionf,ﬁw) is defined recursively as:
" (X0 — 1) = We(Xo — 1),
14 (% — @n 1) = £ (Xn-1 = 0n) fs(Xn, @n < @n41)) (N 1) (7.6)
This path evaluation function fits into eye path tracing as follows:

e When an eye path is extended, the evaluation of the path accumulates an extra BSDF and cosine term.

Thus, path extension corresponds to going frt,ﬂW? to an

e Actual contributions are made to the image when a path hits a light source, or when light sources are
sampled directly. The former case corresponds to replacing the incoming radiance in equation (7.5)

by the self-emitted radiance of the light source that islhifxp < wnt1) = Le(Xn+1 — Wni1)

The latter case samples a paxat 1 on a light source directly, which determines the directinn.

Note that all the vertices and directions present in the path evaluation depend on the vagiaisied to

sample the path.
7.6.2.2 Path gradient computation

The path gradient of a pathof lengthn (with M variables) is defined as the vector of partial derivatives of

the path evaluation:
aof(x) oaf(x)
6u1 o aUM

]T

A partial derivative?f® ) of the path evaluation indicates how fast the evaluation changes when the variable

Path gradient |

ux changes.
Together with derivatives of vertices and directions, we also compute the path gradient. The individual

partial derivatives of equation (7.5) are given by (for brevity, arguments are dropped):

of _of", | jwol
auk auk auk

We computeelative partial derivativedy dividing this expression by the path evaluatibitself:

of afn
auk

w_, oL
/fn +auk/L.
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The expression gives thelative change of the path evaluation in termsuQf
Because the common factors cancel out, the relative partial derivatives also provide a convenient way to

compute the derivatives when extending a path (equation 7.6):

arlw ot af Ny
G/ = SR+ S et T (N ).

Each factor in the path evaluation contributes a separate term to the relative partial derivative. Extending a
path just requires addition of two terms to the sum accumulated up to that point.

The start of a path requires the computatioggévkg/ féw). In our camera model (s€2.6),W; is constant
over the whole image plane, which makes the initial partial derivative t%jé%,, zero. The end of a path,
when a light source is hit or sampled directly, adds a final term to the path evaluation derivative. This final
term accounts for the change of emitted light in terms of the varialyles

In appendix§7.A, details are provided on the exact computation of the path gradient derivatives for

several sampling events.
7.6.2.3 Perturbation intervals using the path gradient

Recall that the perturbation intervalsi, determine the size of the neighborhood around a poiint the
path domain. The relative change of the path evaluatiar) when a perturbatioAu is applied tou, can
be approximated as follows:

Afy =~ <af(u)/f(u)) Aug. (7.7)

ou
For example, a gradiertfy of 300%means the evaluation of the perturbed path can be three times higher
than the non perturbed evaluatiéfu).

The same perturbation intervAly also defines a differential vector in a certain vertex the path.
Thus,Afy also gives the change of the path evaluation along the differential vector. In our applications, the
evaluation of a pathf((u)) is considered to be constant over the footprint. Of coufs#nes change over
the footprint and the path gradient indicates how much.

When the gradient is large, the evaluation will change significantly over the footprint, and coherence is
not ensured. By constraining the relative chafAdg to be within a certain thresholif,ay, perturbation

intervals that do ensure coherence, can be computed using equation (7.7):

Af
Auy = Nmax.
auc/ T

(7.8)

This heuristic determines the perturbation intervals based on the path gradient.
A very small gradient, however, can lead to arbitrary large perturbation intervals and corresponding foot-

prints. Combination with the heuristic based on the number of samples can solve this problémggbe
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7.6.2.4 Implementation

The computation of the path gradient is straightforward. The BSDF and cosine terms, which appear in the
path evaluation, are easily expressed in terms of vertices and directions in the path. Partial derivatives of
these vertices and directions are already computed for the differential ve§tdss (The additional cost
for computing the path gradient is thus very small.

The choice ofA faxdetermines how much the path evaluation is allowed to change over the differential
vectors. Its choice is important because it determines the size of the path footprint directly. In our current
implementation it is a user-defined parameter. For our applications we typically use values E06&hnd

meaning that the path evaluation may double over a single differential vector.
7.6.2.5 Discussion

The path evaluation function that we have used in the path gradient is the integrand of the expanded mea-
surement function with respect to a spherical angle measure. There are other alternatives that we could have

used as a path evaluation function:

e Anintegrand with respect to area measure, as was used in the formulation of the path int&yeal in
could also be used. Such a formulation transfodws into ”X’\'ix%‘*"luszi. The factor introduced by
I

this transformation results in an extra term in the relative partial derivatives. The squared distance

results in a derivative term that has a third power of the distance in the denominator (SgeAlgp

We have tried computing the path gradient using the integrand with respect to area measure, but
found that it does not make a big difference except close to corners where the distance between
vertices becomes small and where the third power in the denominator causes a very large gradient. In
our hierarchical radiosity application, this resulted in some undesirable fine subdivision near object

corners.

e Another interesting function of a path is teeore function The score function of a patin Monte
Carlo integration isf (X)/p(X), wherep is the pdf used for generating the path. It is in fact the score
function that is evaluated and averaged when computing pixel fluxes with Monte Carlo ray tracing.

This could be an interesting choice for tracking derivatives.

Usually pdfs for direction sampling are chosen proportionally to the BSDF or the cosine. These
factors cancel out and the score function only contains factors not used in path sampling. We have

chosen to compute derivatives bftself, and not of the score function for two reasons:

— As will be shown more formally in the texture filtering application, path differentials provide
a tool to estimate aaverageevaluation over the path footprint. This average accounts for

all possible perturbations of a path within a small neighborhood in the path domain. These
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perturbations are not distributed according to the pdf with which a path is generated; the average

is just an integral over the neighborhood, that is approximated with the path footprint.

— When the pdf is chosen proportional to the BSDF (or the cosine), the path gradient includes a
BSDF derivative term that is proportional to the derivative of the pdf. The outgoing direction,
on the other hand, is generated by an importance sampling procedure that is based on the pdf. In
other words, the partial derivatives of the procedure for direction sampling are used to estimate
the footprint, while the partial derivatives of the pdf determine the path gradient and are used to
limit the perturbation intervals.

The derivative of the pdf is related to tlemcond order derivativef the importance sam-
pling procedure (and thus provides additional information). This is easy to show for a one-

dimensional sampling, wheseis sampled according to a pdfx):

x=P1(u)

oxX _ 1
= 5 = B

#Px _ =1 9p(x(u)
=0 = Paw)

For a multi-dimensional sampling, the relation is more involved because the derivative of the
Jacobian determined by the transformation must be computed (se$8dls®). The determi-

nant computation in the Jacobian looses some information about the sampling of the separate
components in a direction. For example, sampling according to the cosine of the angle with the
normal results in a completely determined direction, while the pdf (the cosine itself) only takes
into account the angle with the normal and not the azimuthal angle.

Recently we performed some tests that compute second order derivatives of the sampling pro-

cedure explicitly. Details are given in the next section.

Note that for perfectly specular scatterirf\ﬁf)1 = frﬁw) - fs with fs the constantspecular reflection or
refraction coefficient, derivatives df are zero. As a result the path gradient does not yield any extra

information for the method presented by Igehy.

7.6.3 Second order derivatives

The second order derivatives of vertices and directions in a path can also be used to estimate appropriate
perturbation intervals: The second order derivative indicates how well the first order derivative approximates

the perturbation of a vertex, so it can be used for error bounding.
7.6.3.1 Second order Taylor approximation

Let x be a vertex generated lgyu). If only one variableuy is consideredx = g(ux) defines a parametric

curve from[0,1] to R3,
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A second order Taylor approximation in terms of a perturbatioAuy is given by

1 azg(uk)
AUy A+ 51 ou?

2) 09(uk)

X+ 0% =X+ AUZ,

whereESxf(2> indicates the second order perturbationxof
While this could be used for the computation of more accurate path perturbations, we use it for bounding

the error on a first order Taylor approximation.
7.6.3.2 Perturbation interval heuristic

The difference between a first order and a second order Taylor approximation is given by the second order
derivative term. This term also indicates the accuracy of a first order Taylor approximation. Instead of
using this term directly to bound the error on the approximation, we bounckkaive erroron oxi to a

maximum erro€max.

1 9%9(U) A2
6x|<(2) —6xf(1) = auﬁk Aug oy
S (1) 9g(uk A — ~max-
Xk Ouy Uk

Given the maximum relative error, the perturbation intefua can now be estimated as

0g(ux)

auk

2g(u)

Auk € ax
21 0 2
! k

Thus, computing the second order derivatives of vertices and directions in a path enables another perturba-

tion interval heuristic.
7.6.3.3 Implementation

We have not fully integrated second order derivatives throughout the whole path generation pipeline. A
vertex is a function of a previous vertex and direction, which in turn are functions of other previous ver-
tices and directions and so on. A vertex can thus be written as a number of nested functions depending
on the path variables. Derivatives are computed using the chain rule, but this becomes increasingly com-
plex for higher order derivatives. Therefore, second order derivatives require a significant amount of extra
implementational and computational effort with respect to a first order derivative implementation.

In our current implementation, we only compute second order derivatives for new variables at the mo-
ment they are introduced in a sampling event. For example, if a direction is sampled using new variables
u andv, then the second order derivative of this direction is computedifandv but not for previous
variablesuy. This approach reduces the amount of implementation (and computation during execution)
considerably. On the other hand, this approach only accounts for local effects of the second order derivative
at the moment the new variables are introduced. In practice it turns out that a combination with the other

heuristics delivers the best results (§&e5.4).
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Algorithm 3 Combined heuristic for perturbation intervals
Compute interval for variabley:

1. nrs = intervals based on number of samples (local or global intervals)

2. grad = MIN(1.0,5™)  // gradient heuristic interval

auk/f
ag(uy)
3. second = MIN(l.Oamax%) /I second order derivative interval
0522

k

4. interval = nrsx MIN(grad,second)

Whether the full integration of second order derivatives is worth the additional computational effort is
left as a direction for future research. In any case, the path gradient will remain useful because it includes
factors in the path evaluation that are not taken into account by the sampling pdfs. Therefore, the path
gradient is able to prevent excessive blurring when the pdf does not adequately sample the integrand. This

is not possible using solely the second order derivative of the path generating function.

7.6.4 Combined heuristic

In practice, we use a combination of the three heuristics presented in the previous sections to determine
the perturbation intervals. The combined heuristic should provide perturbation intervals that always give a

good noise versus bias trade-off. It is based on the following observations:

e The combined heuristic should definitely depend on the number of samples. This ensures consistent

estimators, because the footprint becomes smaller with an increasing number of samples.

e The heuristics based on the path gradient and the second order derivatives can give arbitrarily large
perturbation intervals. This is the case when the gradient or second order derivative is very small.

Such large footprints are undesirable as they will introduce a large bias.

We start with the intervals based on the humber of samples and then check the other heuristics and scale
down the intervals by the heuristic that would deliver the smallest interval. The combined heuristic is
summarized in algorithm 3. We use the same maximum relative error for both the gradient and the second
order derivative heuristic. In the applications described next, we will show the influence of the different
heuristics and show that the combination usually gives good perturbation intervals. Still, we think that

further research might deliver even better heuristics.

7.7 Application: Texture filtering

The first application that demonstrates the use of path differentials is texture filtering. In this application

the path footprint will be used to filter textures locally over a surface. This reduces noise in the image due
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to variations in the texture.

7.7.1 Problem statement

Textures are widely used in rendering to increase the visual complexity of surfaces without introducing
additional geometrical detail. Textures modulate BSDF parameters, usually the diffuse reflectance, to vary
the material properties over a surface.

The use of textures may introduce high frequency components in the radiance incident to the image
plane. For example textures may be viewed under a high minification so that a large part of the texture
falls within a single pixel. A typical example in graphics is a checkerboard texture on a large plane. The
checkerboard tiles become smaller when the distance from the camera increases and cause a high variation
of the incoming radiance.

Any form of ray tracing point-samples the incident radiance. For Monte Carlo integration the variance
of the estimate is proportional to the variance of the integrand. Hence a lot more samples are needed to
reduce the variance caused by the variation in the textures. Brute force supersampling works, but it is
expensive to trace all the additional paths.

An interesting approach to this problem is to reduce the variance in the textures locally on the surface
by filtering over an appropriate footprint. The main problem with local filtering is the area over which to

filter: an area too large will blur the image, but an area too small will not reduce the variance adequately.

7.7.2 Local filtering

Local filtering in Monte Carlo ray tracing can be motivated mathematically by investigating the pixel flux
estimator.

The flux in a pixell is estimated by tracing a number of paths and averaging their contribution:

)
=2, b)) 79

Eachu; represents a sample in the path domain.

When few paths are traced, only a few samples are explored in the path domain. For such low sampling
cases, it would be better to use an average path evaluation over a neighbtwrerodind a sample. This
average evaluation is given by:

Jau F(u)du

foulU) = au

The filtered estimator is formed by just replacihwith fa, in (7.9). The filtered estimator will have a lower
variance because a part of the integral is precomputed in the average path evaluation. However, because of
the integral in the average evaluation, its exact computation is as difficult as the original integration problem.

Therefore, an approximate computationfgf(u) is needed.
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Let x be a vertex in the path that resides on a (diffuse) textured surface. The neighbdthoothe
domain projects to the footprint aroundIf we consider the path evaluation to be constant over the neigh-
borhood, except for the variation in the texturejran approximate average evaluation can be computed by
filtering the textures locally over the footprint. Such a local filtering can be performed efficiently in texture
space (seg7.7.3).

Thus, in order to perform local filtering a good footprint estimate is needed. Several footprint estimates

have been proposed specifically for texture filtering:

e Early approaches used the projection of the pixel onto the first visible surface as the footprint. This
works very well for directly visible surfaces, but is difficult to extend to reflected and refracted rays.
Commonly, the total length of a path is then used to determine the level of detail needed in the texture
map. While this works reasonably for reflection off planar surfaces, curved surfaces can diverge or

converge the local light wavefront and cause arbitrary minification or magnification of the texture.

e Other approaches have tried to trace extended rays through the scene. These methods were already

discussed i§7.2.

¢ lgehy uses ray differentials to estimate the footprint in classical ray tracing [44]. The ray differentials
provide the easiest and most robust method for local filtering when the scene is limited to perfectly

specular materials.

e We use path differentials to estimate the footprint for arbitrarily Monte Carlo sampled paths. This
application of path differentials directly extends the local filtering presented by Igehy to glossy re-

flection and refraction.

7.7.3 Texture filtering techniques

Before the results obtained with local filtering are discussed, we will overview a few techniques for efficient
texture filtering.

The footprint in a vertex is represented by two vecthrs AB. These vectors are transformed into
texture space by the texture projection that defines the exact mapping of the texture on the surface. The
transformed vectors define a parallelogrégy over which the texture is to be filtered.

If Fiex is very small, smaller than one texel (one pixel in the texture map), bilinear interpolation between
the nearest texels is used to get the texture value. For such small footprints, no filtering is necessary.

Larger footprints covering many texels need an efficient and accurate texture filtex fiterassigns
an equal weight to any texel covered by the footprint.GAussian filterimposes an elliptical Gaussian
weight function over the footprint. This can give better results because the center of the footprint —the

location of the vertex— will have a higher weight in the averaged evaluation.
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A simple method to filter ovefiex is direct convolutior{38]. All texels under the footprint are weighted
and added to the average texture value. While this is a very accurate filtering technique, it is also very slow.
Each texel in the footprint has to be processed individually.

To speed up the direct convolution, a hierarchical representation of a texture can be used [129]. Mip-
mapping is a well known representation for square textures. The base texture is repeatedly downsampled
by a factor of 2. Four texels are averaged to form a new, lower-level texel, until the coarsest representation
only contains one or a few texels. Each level in the mip-map represents a filtered version of the base texture.

There are several variations possible for filtering a texture over a parallelogram using a mip-map:

e A simple method uses the largest axis of the parallelogram to determine the required level of detalil
in the mip-map [37]. Using trilinear interpolation (interpolation between the 4 nearest texels in both
a slightly coarser and finer level in the mip-map), a single filtered value is obtained efficiently. This
method does not take into account the anisotropy of the parallelogram: a single square, axis aligned
box filter is used. Because the largest axis of the parallelogram is used for the level of detail, aliasing

disappears but the texture is blurred too much in the direction where the parallelogram is thin.

e A better, but also more expensive method performs anisotropic mip-map filtering. The smallest axis
of the footprint is used to determine the level in the mip-map. Several samples on this level are
averaged along the larger axis [89]. The number of samples is determined by the ratio of the larger
and smaller axis (which can be large for elongated footprints). This method results in an approximate

box filter over the footprint.

e A Gaussian filter can be approximated by a variation of the previous method, ebilid weighted
average filtering with a mip-maf83]. In this method several Gaussian weighted samples are also
taken along the smaller axis. A finer level in the mip-map is determined by dividing the smaller axis
by a certain number of samples for this axis. For each sample along the smaller axis, several Gaussian
weighted samples are taken along the larger axis. This method is more expensive than the previous

box filter, but for large footprints it is still much faster than direct convolution.

We have tried all these filtering techniques (direct convolution: Gaussian and filtered, simple mip-map,
anisotropic mip-map, elliptic weighted average). A simple comparison is shown in figure 7.7, which shows
the typical checkered floor that is filtered with a pixel footprint. The footprint was in fact computed with

path differentials, but for this simple case it is almost equal to the exact projection of the pixel on the plane.

The Gaussian direct convolution filter gives the best result, but it is also the most expensive filter. The

mip-mapped box and Gaussian filters are very similar in quality (we only used 3 Gaussian samples along
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Isotropic mip—map (11.5 sec.)

No filtering (9 sec.)

s—"l1]

Vi
;\Ew.::

il

ol

1_3
e

 od

, gauss filter (36 sec.)

Direct convolution

Direct convolution, box filter (35 sec.)

az
e

i

s

¢

0
zck

”“i_;_siii:“"

g

gauss filter (16 sec

-map,

Anisotropic mip—map, box filter (12 sec.)Anisotropic mip

Figure 7.7: Texture filtering: These images show some different filtering techniques. Each image was generated with

a single sample per pixel and used the (pixel) footprint to filter textures.
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the smaller axis, compared to 1 for the box filter), but the Gaussian filter is slightly more expensive. Simple
mip-mapping clearly overblurs near the horizon, but is still much better than the horrible unfiltered image.
For all the following examples we have used the mip-mapped box filter, because it delivers good quality

for a reasonable amount of computation time.

7.7.4 Results

To test path differentials for texture filtering, a classical ray tracer was extended with glossy materials.

The example scene (see figure 7.8) consists of a room with a diffuse textured floor and several diffuse
textured walls. Checkerboard textures were used to clearly demonstrate the effects of the filtering. The
back wall is not textured and highly glossy (a modified Phong BRDF with an exponent equal to 1000), as
is the left sphere (exponent 150). The right sphere has a glossy transparent BTDF (Phong-like refraction,
exponent 1000). A single light source illuminates the scene from above.

This scene is ray traced using several samples per pixel. Glossy scattering uses a pdf proportional to the
BSDF. No diffuse scattering is performed.

Figure 7.8 shows a comparison between an unfiltered, a filtered, and a reference image. The filtered
image used path differentials to estimate the footprint and used the combined heuristic for the perturbation
intervals (with global intervals for the number of samples). For both the filtered and unfiltered image, 4
samples per pixel were used. Exactly the same paths were used for both images. The reference image was
rendered with 1024 samples per pixel.

As expected, the filtered image shows less noise where textures are visible. This can be seen on textured
surfaces that are directly visible (e.g., the left wall), reflected once (back wall, part of the reflective sphere),
but also on textured surfaces reached after several scatterings (glass sphere, glass sphere reflected in back

wall). The two cut-outs zoom in on some of the interesting parts of the images:

e Left cut-out: The back wall reflects both the side wall and the opposite wall in the room. The
side wall is viewed through the reflection under a slant angle, which causes the derivatives of the
reflected direction to be projected to an elongated footprint. The opposite wall is further away but

perpendicular and is blurred less by the glossy reflection.

e Right cut-out: The glossy glass sphere causes different levels in magnification of the textures. Mainly
due to the path gradient, the footprint size adapts nicely to the magnification delivering an even noise

versus bias trade-off over the whole sphere.
In figure 7.9 a comparison is made between the different heuristics for choosing perturbation intervals:

e Top image: Using only the number of samples to determine the perturbation intervals overblurs

textures for longer paths. This is especially visible in the glass sphere. The reflections in the back
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wall also show too much blurring, because those paths already depehdasiables 2 for pixel

sampling,2 for the reflection).

e Middle image: This image combines the path gradient with the number of samples. The path gradi-
ent successfully reduces the footprint for longer paths that magnify the textures. This is especially

noticeable in the glass sphere and its reflection.

e Bottom image: This image combines the heuristic based on the (limited) second order derivatives
with the one based on the number of samples. While it reduces blurring for glossy reflections (back
wall), itis unable to adequately limit the blurring in the multiple refractions of the glass sphere. Since
the second order derivative is only computed at the moment new variables are introduced, the global
focusing effect of the refractions is not handled well. A full integration of the second order derivative

might give better results that match the (cheaper) path gradient heuristic.

The combined heuristic (figure 7.8, top) preserves the advantages of all heuristics: consistency (convergence

to the correct solution), noise reduction, but with a limited bias in reflections and refractions.

7.8 Application: Particle tracing

In the second application, path differentials are used for particle tracing. Particle tracing constructs paths
starting from the light sources. This Monte Carlo simulation of light transport is used in many global
illumination algorithms (se&3.4.2 and4.3.1.2).

We present a hierarchical radiosity application to demonstrate the usefulness of path differentials for
particle tracing, but it can be used as well for the other algorithms.

We will briefly review particle tracing radiosity i§7.8.1. Existing techniques for hierarchical refine-
ment are given i§7.8.2, which are theoretically compared with our new refinement oragle®3. Results

are discussed ifyi7.8.4.

7.8.1 Particle tracing radiosity

Particle tracing radiosity is a form of Monte Carlo radiosity, that computes a radiosity solution on the
patches in a discretized scene, but it prevents discretization of the light transport equations themselves.
Continuous random walks —light paths— are constructed from the light sources. Contributions are accu-
mulated on patches hit by the light paths, resulting in a discretized version of the radiosity function on the
surfaces. Since continuous paths are traced, the integral equation that governs the light transport is solved
correctly (at least asymptotically) and is not discretized into a set of linear equations. The advantage is that

glossy and specular materials are easily incorporated into particle tracing radiosity by just using standard
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Reference (1024 samples)

Figure 7.8: Texture filtering: in the top image (4 samples/pixel), no texture filtering was applied. In the middle image
(4 samples/pixel), textures were filtered over the path footprint estimated using path differentials. Clearly, the noise is
reduced by the filtering, while the different levels of magnification or minification of the textures are closely followed
by the estimated footprint. A reference image is shown at the bottom.
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Heuristic: 2nd deriv. & Nrs

Figure 7.9: Comparison between different perturbation interval heuristics (4 samples/pixel). Top: Using only the
number of samples overblurs the textures. Middle: Adding the gradient heuristic improves the footprint for paths
scattered multiple times (the glass sphere). Bottom: Using the second order derivative mainly shows improvement for
the (single) glossy reflections (on the back wall). The combined heuristic (Figure 7.8, top) preserves the benefits of all

these different heuristics.
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light tracing. This is much harder for discretized radiosity methods, since an angular representation of the
radiance function is needed on non-diffuse surfaces (see [21]).
Extensive information about particle tracing radiosity can be found in the literature [79, 78, 41, 5]. We

use:
e A collision estimator: each vertex in a light path contributes to the patch that was hit.
e Constant basis functions: the radiosity solution is assumed to be constant over the patch.

Formally, given a set of particleB; (x;, i, @) from particle tracing (se§3.4.2), the radiosity on a patch

j, for a constant basis function, is estimated as:

_ B s v, ) g

Aj A ’

B

wherej denotes a patch in the scene af@, j) = 1 when particled; resides on patchand zero otherwise.

In practice, the contributions are addedBpon the fly during particle tracing. The patghhit by a
particle is directly known from the ray-patch intersections.

The assumption that the radiosity is constant over the patches in the scene, requires a pre-meshing of the
scene. Since the assumption usually does not hold for large patches, the scene geometry must be subdivided
in a large number of small elements in a preprocessing step. The smaller the elements, however, the larger

the number of particles that are needed to reduce the variance of the radiosity solution.
7.8.2 Hierarchical subdivision

Hierarchical subdivision provides a solution to the meshing problem for radiosity methods. Instead of
pre-meshing the scene, the patches are subdivided appropriately on the fly.

Several methods have been proposed for hierarchical subdivision in particle tracing radiosity:

e Heckbert [41] uses an adaptive radiosity texture for each surface in the scene. Initially the textures
are subdivided into a user-defined number of elements. Then, light paths are traced and the hits are
accumulated on the elements. Several iterations are performed, and, after each iteration, the elements
that received a certain minimum number of hits are recursively split into 4 sub-elements. Since only
the number of hits was recorded in the parent element, nothing is known about the difference in
radiosity of the sub-elements. Therefore, these elements are cleared and the rays have to be re-shot

in the next iteration, in order to find the correct distribution of hits over the sub-elements.

e Tobler et al. [111] propose an extension of Heckbert's adaptive radiosity textures. The particle hits
are accumulated on two different levels in the hierarchy. The elements in the finest level, which
is called the preview level, indicate whether the constant radiosity of the coarser level is adequate

to represent the real radiosity function. If the difference between the preview elements exceeds a
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certain threshold, the preview level becomes the main level and a new preview level is constructed by
subdivision. Also in this scheme, hits are discarded when subdividing: Several hits may have been
recorded in the coarse, abandoned level that were not recorded in the preview level. The hits cannot

be distributed over the children because, again, only the number of hits is recorded.

Pope and Chalmers [82] improved on this approach by using a more sophisticated threshold to trigger

subdivision. Still subdivision leads to the discarding of particles.

o Density estimation prevents discarding of particles by storing all particle hit points [93]. After tracing
a large number of particles and storing the hit points in a file, density estimation is used to reconstruct
the radiosity on a very dense mesh. The mesh is then decimated for display purposes. While no hits
are discarded, the storage overhead for storing all particles is large. The method is not progressive,

because the expensive reconstruction is performed on a fixed set of particles.

All these subdivision schemes are not really oracles: they do not predict the appropriate level of subdivision
for a certain particle beforehand. The disadvantages of such a-posteriori criteria are that at some point

particles have to be discarded, unless all particles are stored.

7.8.3 A subdivision oracle based on path differentials
Path differentials allow for a simple, yet effective, subdivision oracle for particle tracing radiosity:

e Particle tracing consists of tracing light paths through the scene. Each vertex in a light path forms a

single particle.

e For each light path, path differentials are computed. The footprint estimate in each vertex indicates a

region around the vertex where the contribution of the path can be considered more or less constant.

e The area of the footprint can thus be used as an indication for the size of the element to which the

particle should contribute.

The subdivision oracle simply descends the element hierarchy until an element is found that best matches
the area of the particle footprint. Elements are subdivided as necessary while descending the hierarchy.

To display the radiosity solution, the radiosity accumulated in higher levels of the hierarchy is pushed
down towards the leaves. This is a standard operation in (discrete) hierarchical radiosity [22].

The path differential oracle has several interesting properties:

e The oracle easily accommodates clustering. Clustering groups patches together into a cluster hierar-
chy. When clusters are far apart, there is no need to compute transport between the individual small
patches that form the clusters. Computing transport between the clusters themselves can highly speed

up radiosity computations. It is frequently used in discretized radiosity algorithms [101, 96].
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Our oracle can use clustering if the footprint area is larger than the individual patch that was hit by
the particle. A contribution will be made to the cluster that contains the patch and that has a cross

section area closest to the footprint area.

e While the radiosity solution in previous subdivision approaches for particle tracing may be hierarchi-
cal, the transport itself is not. Each particle contributes only to the finest subdivision level (or the two

finest levels). For small elements, this causes a high variance in the solution.

Path footprints, on the other hand, are computed for individual paths, so that each particle can con-

tribute to a different level in the hierarchy.
e No storage is needed, except for the radiosity solution.

e No particles are discarded when subdividing, because the oracle predicts an appropriate level a-priori

for each patrticle.

The path differential oracle is, to our knowledge, the first oracle for particle tracing that can determine an

appropriate subdivision level for a single path.
7.8.4 Results

A hierarchical particle tracing radiosity implementation based on path differentials was addedb@Rr-
PARK. The implementation uses constant basis functions and has support for clustering. The test scene
(see figure 7.10) contains several diffuse objects and a glass sphere on the table. The glass was modeled
using a Phong-like refraction model. Note that the glass sphere shows up black, because only the diffuse
component of the radiance distribution in the scene is stored.

Figure 7.10 shows a comparison between a non-hierarchical pre-meshed method and the hierarchical

method based on path differentials:

e The pre-meshing subdivides all patches into elements of a certain size. Both a coarse and a fine pre-
meshed scene were used. While the coarse subdivision shows relatively little noise, the area around
the caustic needs a finer subdivision. The fine subdivision is adequate in the caustic area, but leads to

a noisy solution in dimmer, indirectly lit areas, such as the floor beneath the table.

e The hierarchical subdivision with path differentials shows virtually no noise, but still the caustic area
is nicely subdivided. Even compared to the coarse fixed subdivision, the region under the table shows

less noise.

The two top images in figure 7.11 show a comparison between two different interval heuristics. The
top image only uses the number of samples, which, just as in the texture filtering application, leads to a bad

subdivision for the caustic.
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The bottom image in figure 7.11 was generated with a hierarchical version of stochastic Jacobi radios-
ity [8, 5]. This is a discrete radiosity method, that only computes diffuse transport. About the same number
of rays was used for this method as for the path differential images. It is interesting to see that, apart from
the caustic (that is not computed at all by the discrete method), the subdivision is very similar. This com-
parison shows that path differentials provide a refinement oracle for continuous radiosity methods that can

match the oracles used in discrete Monte Carlo radiosity methods.

7.9 Conclusion

In this chapter we presented path differentials, a general tool for global illumination algorithms. Path
differentials compute partial derivatives of vertices and directions in a path for all the path variables. Using
path differentials, the region of influence or footprint of a vertex can be estimated by a first order Taylor
approximation. Such a footprint estimate can be useful in many applications, as was demonstrated in two
applications: local texture filtering for glossy BSDFs and a subdivision oracle based on single paths for
hierarchical particle tracing radiosity.

Path differentials are easy to compute: the theory relies on standard calculus, requiring simple differ-
entiation of existing sampling procedures. Although derivatives for all sampling procedures have to be
implemented, it is not too difficult to add it to an existing rendering system. Path differentials scale well
with scene complexity, because they are computed from a single, standard, infinitely thin path. Intersection
calculations do not need to change.

While path differentials already resulted in a significant variance reduction in the applications, there
is still a lot of room for refinements, extensions and other applications. Some interesting directions are

outlined next.

Refinement of perturbation intervals The choice of the perturbation intervals, that determine a small

neighborhood around a sampling point in the path domain, is vital for a good footprint estimate. These
intervals have to ensure coherence of the path contribution over the footprint. Several interval heuristics
were explored and successfully combined, but refining these heuristics is definitely an important area for

future research:

e Second order derivatives may be very helpful for error bounding and interval estimation. While
we have performed some experiments with the second order derivative, a full second order Taylor

approximation of the footprint may lead to improved estimates and better results.

However, adding second order derivatives throughout the whole rendering system and for all sampling

events involves a significant amount of implementation. An interesting but open question is whether
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Fixed, coarse subdivision

Fixed, fine subdivision

Hierarchical subdivision
using path differentials

Figure 7.10: Particle tracing radiosity (400k paths): The two top images use a non-hierarchical method with a pre-
meshed scene. A coarse subdivision reduces noise, but cannot reproduce the caustic accurately. A fine subdivision
needs a lot more patrticles to reduce the noise. The bottom image uses the refinement oracle based on path differentials.
The subdivision level, which is determined for individual paths, ensures a virtually noiseless solution, while still the
caustic is reproduced quite accurately.
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7 Path differentials
i —— without gradient
z Path differentials

S S with gradient
Stochastic Jacobi

i hierarchical radiosity

Figure 7.11: Hierarchical radiosity (400k paths): The two top images are computed with path differentials. The
top image did not use the path gradient, which leads to a bad subdivision in the caustic area. The bottom image was
computed with hierarchical stochastic Jacobi radiosity, which is a discrete Monte Carlo radiosity algorithm. The overall
subdivision is very similar to the one of path differentials, with the exception of the caustic (the method only handles
diffuse transport).
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the computational overhead of the second order derivatives is justified by the improvement of the

footprint estimate.

e Currently, the footprint estimate does not take visibility into account. While allows an easy compu-
tation of the footprint, it might be interesting to perform some selective visibility tests and reduce
the footprint when a change in visibility is detected. For example, a small number of rays could be

allocated to test visibility on the boundary of the footprint or the differential vectors.

Non-constant footprints  Currently, our applications consider the path contribution to be constant over the
footprint. The path gradient, that indicates the change of the path evaluation over the footprint, is only used
to limit the footprint size. An interesting extension would be to use the path gradient and possibly higher
order derivatives of the path evaluation to explicitly approximate the path evaluation over the footprint.
Specialized texture filters could be designed that match the evaluation over the footprint. For the radiosity
application, higher order basis functions could be fitted to the evaluation over the footprint resulting in a

better radiosity solution.

Reducing the number of differential vectors The number of partial derivatives (and the number of
corresponding differential vectors) increases with the number of variables in a path. For long paths, this
number grows large and many derivatives must be tracked when tracing a ray or scattering a direction. This
results in non-negligible increase in computation time (up to 70% for tracing a single path in a simple scene,
using an unoptimized implementation).

Reducing the number of differential vectors before transfer or scattering could limit the total number of
differential vectors. Suppose, for example, that an incoming direction depends on 4 variables. Combining
the four differential vectors into two new vectors before scattering, limits the number of differential vectors
of the outgoing direction again to 4 (2 combined and 2 new variables).

How to combine the differential vectors before scattering is an open problem. The derivatives of the new
directions can depend on the derivatives of the previous directions in complex ways. It is not obvious how
a reduction such as the one used to simplify the footprint to a parallelogram, would influence the further

vector derivatives.

Other applications Many other global illumination algorithms may benefit from path differentials:

e Other algorithms based on patrticle tracing could use a method similar to the subdivision oracle. For
example, in density estimation or photon mapping the footprint could be used to determine a splatting

size or a maximum search radius for a particle.
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e An interesting application would be to combine path differentials with bidirectional path tracing.
While computing path differentials for the separate eye and light paths is straightforward, it is not

obvious how to handle the connection between the sub-paths with respect to the path footprints.

e We have used path differentials for importance computations in photon mapping. This application

will be discussed in detail in the next chapter.

e The partial derivatives can also be used to efficiently compute perturbations of a path. Instead of
constructing a footprint, these perturbations could be used directly to construct new paths. While
these path perturbations cannot be used directly in a standard Monte Carlo estimator —the probability
distribution for sampled paths is different from that of the path perturbations—, it could be used to
compute mutations of paths in Metropolis light transport. This application was already mentioned by
Chen [15] but her framework currently only includes specular paths. Our framework allows arbitrary

BSDFs and provides a step forward towards this application.

e Time could also be introduced as a variable in a path for animation applications. Partial derivatives
with respect to time could enable the development of specific filters to efficiently compute motion

blur.

These are just some examples of applications, and we are convinced that many other applications will

benefit from path derivatives and path differentials.

Appendix 7.A Derivative computation details

This appendix contains a detailed description of the computation of partial derivatives for several sampling
events that occur in the Monte Carlo sampling of paths. The partial derivatives for vertices, directions
and the path evaluation will be given for pixel sampling, ray transfer, BSDF sampling and light source
sampling. The information in this appendix is mainly targeted at people who want to implement path
differentials themselves.

The derivative procedures for pixel sampling and ray transfer are similar to those presented by Igehy [44],
because these events are the same for classical and Monte Carlo ray tracing. They are repeated here for
completeness.

We want to stress again that the derivatives are straightforward to deduce from the sampling procedures.
Any other importance sampling procedure is easily derived in the same manner as the examples given here.

In these derivative examples, we will use the following notation:
e X, w: the previous vertex and direction

e X', w: a newly sampled vertex or direction
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e Uy A variable introduced in a previous sampling event
e u,Vv: Variables introduced for the sampling event under consideration (all events use 2D sampling)
e N: the shading normal
e Ng: the geometric normal
e wr: the perfectly specular reflection vector (given an incoming directiama vertexx).

7.A.1 Pixel sampling

Pixel sampling constructs a directios by sampling a uniform point on a certain pixel. Together with the

eye vertexeye, the direction forms the starting ray of an eye path.

Direction derivative Given 2D image coordinates () and a camera coordinate systeviiefv, Right,

Up), a non-normalized viewing direction is given by:
d(a,B) = View+aRight + BUp.
Uniform sampling of a pixel using (random) unit variables supplies the image coordinates:

O = U pix, + pix,

B =vpix,+ pix;,

with pix,,, pix, the width and height of the pixel, angix;, pix; the left and top coordinate of the pixel
under consideration.

The normalized sampled direction is:

. d
J = G (7.10)

The derivative fow is:
00 owoa 0w
au _ 9a ou oo PHw

where% is found by differentiating (7.10) with respectdo

9w (d-d)Right — (d-Right)d
aa (d-d)3/2

For % a similar equation can be derived.

Evaluation derivative Pixel sampling introduces a facté(Xeye — «') into the path evaluation. This

factor depends on the camera model and the reconstruction filter of a pixel. In our implementation we use
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a box filter and a simple pinhole camera model. For this dAbEeye — &Y) is constant across the image

plane. Therefore,
aWe(Xeye d (d)

ou,v =0

The start of an eye path initializes the sum to zero and the terms of the relative partial derivatives of the path

evaluation are summed during the tracing of the paffiss(2.2).
7.A.2 Ray transfer

Ray transfer computes a new path verby tracing a ray from a previous vertexin a directionc.
Transfer does not involve sampling new variables: tracing a ray is completely deterministic. Therefore,

only partial derivatives with respect to previous variahlgmust be computed.

Vertex derivative The new vertex is given by:

X' =rc(x — w) =X +tw,

with t the traveled distance to the new vertex.
The partial derivatives are given by:

o o ow ot
ou B Ouy ou,  Oug ’
with ) )
ot (Tuxk +tﬁ) Ng

oue ®-Ng ’
whereNg is the geometric normal of the surfacedn This result can be proved for an arbitrary surface [43].
The three terms in this derivative can be explained intuitively (by considering the derivatives in the other

two terms to be zero):

° f%:(: A small displacement of the previous vertex results in an equal displacement of the new vertex

(when all other terms are zero).
° th(f;: A small change in the direction of the ray is amplified by the traveled distance.

° a"—utkm: The first two terms indicate the positional offset of the vestewith respect to the position
and direction of the ray, but it does not take into account the orientation of the surface that is hit. This
is exactly what the third term does: the positional offset is projected onto the tangent plane of the

surface inx’.

For example, when a surface is hit at a grazing anglé\Ng small), the derivative of can grow large
because of the small value of the nominator. If the positional offset has a direction similar to the

normal, this effect is the largest (numerator goes towayds

As was shown ir§7.5.2, the vertex derivatives are co-planar and lie in the tangent plane of the surface in
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Evaluation derivative Tracing a ray does not change the evaluation of a path as specifjédia.1.
Alternatively, the evaluation could be expressed in terms of area measure. In that case the tracing of a
ray corresponds to a transformation from spherical angle measure to area measure, which add%'?& factor
to the evaluation.
The relative partial derivatives of this factor are:

N o N oot
atT/U)N _0ug N+ duy Zauk

t2 w-N t3

auk
As said before, we do not use this term in the path gradient, becauSefélotor in the denominator causes

high gradients for short distances, and resulted in a fine subdivision near corners in the radiosity application.

7.A.3 Direction sampling

Direction sampling generates a new directiohgiven an incident directiom in a vertexx. The partial
derivatives depend on the sampling procedure which can be different for each BSDF model. We will derive
derivative formulas for a diffuse reflection BRDF that uses a cosine distribution sampling, and for Phong
lobe scattering.

In our rendering framework, a transformation to a local sampling coordinate frame is applied first. A
new directionwy is generated in the sampling frame and transformed back into world coordinates giving
the directionwy. Section 7.A.3.1 shows how the transformation is handled when computing derivatives.

Diffuse reflection and Phong lobe sampling in the local frame are detailgtiAn3.2 and7.A.3.3.
7.A.3.1 Coordinate transformation

Given three vectorX, Y, Z that form an orthonormal basis in the current frame, the maigixe [XYZ]"
represents the rotation to the new coordinate frame.

The sampled direction in the new coordinate framg,is given by
(A)/S - Ts(A)/ .

The derivatives for a variabla are
dwg  0Ts o
au ~ ou T
where
oTs _[ox oY oz
auk B aUk auk auk '
Given the derivatives of the local vectak, the derivatives oty are computed as
ow 1T 0wl aTsw,

au G )

The derivatives of the basis vectofs Y, andZ depend on how the local frame is chosen, which in turn
depends on the BRDF model. This transformation is also used to transform derivatives of the incoming

i ion 9w duws
direction, o0y to T
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7.A.3.2 Diffuse reflection

Direction derivative A diffuse BRDF scatters light equally in all directions. The BRDF is a constant, so
sampling can be done proportionally to the cosine with the surface nocostl £ Nw). After a transfor-
mationTg which turns the normal into thé-axis, the sampling o, is given by

cosf =+1—u,

¢ =2nv, (7.11)

w|, = [cosp sinB, sind sind, cos] " .
The derivatives for previous variablegin the local frame are zero, because the outgoing direction does not
depend on the incident direction, so tI%ﬁ{t = TST(—giusw(). Thus, these derivatives depend on the change

of the normal (i.e., the sampling frame) in termauQf

The derivatives for the new variablasandv are easily derived from (7.11) by standard calculus.

Evaluation derivative Since a diffuse BRDF is constant, all the evaluation derivatives are zero. The
cosine factor in the evaluatioM(¢ ') adds a tern(gTNk - +N- %)/(N - ) to the path gradient for any

BSDF.

Second order derivative The second order derivative is only computed for new variablesin the
sampling frame. As explained i§¥.6.3, it is currently used to estimate the perturbation intervals. The

second order derivatives in the sampling frame are straightforward to derive from the first order derivatives.
7.A.3.3 Phong scattering

A modified Phong BRDF samples a new directigharound the perfectly specular reflected directign

with a pdf proportional to @os>a distribution (wherex is the angle betweew andwg).

Direction derivatives Given the incoming directiom, wg is given by the well known expression
wWr = wW—2(wWN)N.

A transformationT s to a sampling frame is applied that turmg into theZ-axis. The derivatives afr are
given by

dwr 0w 2{(0). )6N aw. 6N)N .

au ou 2 [0 Nag Ty N9 g

The derivative of the shading norm%\g) depends on the underlying geometry. As shown by Igehy [44],
the derivative for a plane is zero, and for a sphere it is givelg’—;E:yR with R the radius of the sphere. In
our implementation, we use normal-interpolated triangles and quadrilaterals. The derivatives are similar to

the sampling of a vertex on a triangle or quad, which are givgiTiA.4.1. As Igehy points out, the use of
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standard calculus easily accommodates non-physical phenomena such as interpolated normals. This would
be harder with differential geometry techniques.
In the local sampling frame, the sampled direction is given by Phong lobe sampling, a well known
importance sampling procedure [64]:
cosd = ul/(5+1)
sin@ = v/1—co#,
¢ =2nv.

The directionuy, is now given by
W}, = [cosp sinB, sind sind,cosA] " .

To computewy, we just need to derive these equationsfandv (only non zero derivatives are shown):

dcosh __ A ys/(stl) — 1

ou St1 (S+1)cosB ’
958 — _ coshx 29% /sing, (7.12)
% _om.

ov
The derivatives forwy, are easily computed from these equations.

One remark:

e Near the pole of the lobe, the facté% becomes large asin® goes to zero. Limitingsin® to a
certain smalle is sufficient to prevent this problem. The large partial derivatives that still appear

around the pole, are countered by a large second order derivative that limits the perturbation interval.

Evaluation derivatives The BRDF evaluation i€(wg - o), with C a material constant. Derivatives are

easily computed.

Second order derivatives The second order derivative is computed by differentiation of the first order
derivative. While this is standard calculus, the expressions become increasingly complex and are not repro-

duced here.

7.A.4 Light source sampling

This section details derivative computations for light source sampling.
Sampling a path vertex on a light source involves two steps, choosing a light s§drée4(2) and

sampling a point on that light sourcg7(A.4.1).
7.A.4.1 Choosing a point on a light source

We will demonstrate the computation of derivatives for a regular quadrilateral and a triangle.
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Quadrilateral  Given a regular quadrilateral light source (i.e., a parallelogram) with vertic® C, D

and given random numbeuwsv, a uniformly sampled vertexX and its derivatives are given by
X' =A+uB—-A)+v(D-A)

= X -B-A,
% —D-A.
For irregular quadrilaterals, the sampling procedure and its derivatives are more complex. First a map-
ping from uniform(u,v) to bilinear coordinates must be performed. The point is then sampled using the
standard bilinear mapping’ = u(B—A) +v(D —A) —uv(B—C+D—A). See [5, p. 247] for more

information.

Triangle A simple procedure for sampling a uniform point in a triangld3, C is given by [112]:
if (U+v>1l)thenu=1-u;v=1-v
X'=A+uB-A)+Vv(C—-A).
In fact a point is sampled in a parallelogram, and one half ¢ > 1) is mirrored back into the triangle.
This doubles the density of points compared to the density in the parallelogram. Dividing the derivatives

by a factory/2 corrects for this higher density. The derivatives are

ox’

EZ(B—AV\@
ox’
W:(CfA)/\fZ.

For example, suppose thidtuniform samples are generated in the triangle. The expected d&hsity
sampled points in a poin(u, V) in the triangle i8

N N N

2 % " ABxAC/2  AreaAB,C)’

Y(X') =

7.A.4.2 Choosing the light source

Suppose there are a number of light sources that emit in total &fjixUsually light sources are chosen

according to their emitted power, resulting in a probabifityor choosing a light sourcle

_ o
Dot

Note that this is a discrete sampling event, and no derivatives can be computed. We can, however, account
for this probability by scaling the two partial derivatives of the sampled points with a fgé®r This

factor accounts for the lower density of points on a single light souft®ver samples are taken on this

light source).

Note that other procedures for sampling uniform points in a triangle are possible (see [112]). These result in other partial deriva-
tives, but the density (i.e., the vector product of the derivatives) stays the same for all procedures.
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Note that other discrete sampling events can also be handled by scaling the derivatives (e.g., Russian

roulette).



8 Photon mapping

This chapter outlines a popular, two-pass global illumination algorithm, named photon mapping. In a first
pass, particles are traced and stored in photon maps, which are used in a second, image-space stochastic ray
tracing pass. In this chapter the standard photon mapping method is discussed along with several important
optimizations needed to make photon mapping efficient. In the next chapter we present density control for

photon maps, a technique to construct memory-efficient photon maps.

8.1 Introduction

Photon mapping is a two-pass method for global illumination that is able to handle all possible illumination
features, such as indirect illumination, specular reflections and caustics, in a reasonably efficient manner.
The first pass in photon mapping consists of standard Monte Carlo particle tracing. The particles or
‘photons’ are shot from the light sources and are all stored individuallghioton maps A photon is
represented by a position, an incoming direction, and the photon power. Typically two photon maps are

constructed:

e A global photon maghat stores all the particles and gives an approximate representation of the

complete radiance function in the scene.

e A separate, high resolutiotaustic photon majs used for accurate caustic reconstruction. The

caustic photon map will be visualized directly, while the global map will only be visualized indirectly.

To reconstruct radiance from the photon maps, techniques borrowed from density estimation are used:
A number of photons nearest to the point of reconstruction are collected from the photon maps and are used
to estimate the radiance. Photons are only stored on diffuse or glossy surfaces, because a reconstruction of
the specular radiance component would require too many photons.

The second pass in photon mapping uses a stochastic ray tracing algorithm that is modified to take
advantage of the different photon maps. The caustic photon map is visualized directly, because, as we
mentioned before, caustics are much easier computed with light paths than with the eye paths of stochastic
ray tracing. The global map is visualized indirectly after a diffuse or glossy bounce (a final gathering step).

Photon mapping was developed by Henrik Jensen. The standard method described above was published
in '96 [47]. Earlier papers that used photon maps, focused on the caustic reconstruction [48], efficient
shadow generation [51], and optimizing path tracing by photon map based direction sampling (but with-
out explicitly using the radiance reconstruction from the photon map) [46]. Later, several extensions and

optimizations were presented both by Jensen and other authors [53, 81, 58, P6, P9, P10].

143
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Over the last few years photon mapping has become one of the most popular algorithms for computing

global illumination. The main reasons for its popularity are the following:

e A photon map is independent of the underlying geometry. A photon has a position, a power, and an
incoming direction, but it is not explicitly attached to a particular surface or patch. A photon map
scales well with increasingly complex scenes. For highly tessellated scenes, it is possible to compute

the illumination with less photons than there are geometrical primitives in the scene.

e Photon mapping handles all illumination phenomena in a reasonably efficient way. This is due to the
specific multi-pass configuration: Caustics are represented separately in the caustic map, direct illu-
mination is computed accurately by explicit sampling of the light sources, and indirect illumination

is accurately computed through a final gather.

e The implementation of photon mapping only requires simple extensions to a standard Monte Carlo
path tracer. The photons are stored in a kd-tree, and all transport is computed by Monte Carlo ray

tracing.

Although the separate aspects of photon mapping, such as storing individual particles or final gathering,
have been presented before, it is the specific combination of all these aspects that makes photon mapping

such a robust and elegant algorithm:

e The storage of individual particles was also used in density estimation as presented by Shirley et
al. [93] and improved by Wade [118] and Walter et al. [122, 121]. For each patch all particle hits
are collected in a file. Each patch is then subdivided in a fine mesh, and for each mesh vertex the
diffuse illumination is reconstructed from the particle hits using density estimation. The fine mesh is

decimated for display purposes.

While the concept of this method is similar to photon mapping, there are two important differences.
The first difference is that a photon map is independent of the underlying geometry, while in density
estimation the particles are collected per patch. Another difference is the use of a final gathering
step. The indirect visualization of the global map allows a less accurate radiance reconstruction and,

consequently, requires far fewer photons.

¢ Final gathering is frequently used for radiosity methods [18, 21, 7], because it allows a less accurate
radiosity solution. The global photon map is also a coarse approximation of the radiance in the scene,
but it includes non-diffuse, glossy illumination and is independent of geometric complexity. Glossy
global illumination in complex scenes can become problematic for radiosity, leaving photon mapping

as more robust alternative.
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e Similar multi-pass configurations that separate direct illumination, indirect illumination, and caustics
have been presented before [91, 18] (see also chapter 4). Again the geometrical independence of the

photon map data structure provides an advantage with respect to these methods.

These advantages have led to a widespread adoption of photon mapping. It is currently available in many
commercial and free rendering software [72, 113, 105, 9] and is being used increasingly in high quality
animation production. For example, photon maps were used, although still sparingly, in the computer
generated movie ‘Final Fantasy, The Spirits Within’ (Square Pictures).

The remainder of this chapter explains the different steps in the photon mapping method in more detail:
Photon map constructiori§.2), the radiance reconstructidi8(3), and the rendering pasg(4). We will
indicate several problems, improvements and optimizations, but for a more extensive treatment we refer
to Jensen’s excellent book on photon mapping [50] and the SIGGRAPH 2000, 2001, and 2002 course

notes [49, P9, P10] to which also other authors (P. Christensen, T. Kato and myself) contributed.

8.2 Photon map construction

The construction of a photon map is performed by standard particle tr&@riyX). Sincell the individual

particles will be stored, some care has to be taken when choosing a data structure for theg8h@i@n (

8.2.1 Particle tracing

Particle tracing constructs paths starting at the light sources. The mathematics behind particle tracing were
already discussed in chapter§3(4.2). Each vertex in a light path results in a particle. Therefdriéght
paths can result in more th&hparticles. The number of particles is denoted\ay

Recall that a particl&@(x, w, @) consists of a positior, a directionw, and an associated weightthe
power, energy, or color of the particle. A photon map stores incoming particles, that arrive at a suxface in
the directionw represents the incident direction of the particle. The global map stores all the particles and
approximates the equilibrium incoming radiance distributign

Particles are only stored when the material of the intersected surface has a diffuse or glossy component.
Reconstruction of the specular component of the outgoing radiance would require too many incoming pho-
tons in order to achieve a reasonable accuracy: A specular BSDF has a significant value for only a very
small set of incoming directions (given a certain outgoing direction), so that only a tiny fraction of the
photons (that do have a matching incoming direction) will contribute in the radiance reconstruction.

A high-resolution caustic map is constructed separately from the global map. As the name indicates,

this map stores the caustic illumination which is formed(b§* (D|G)) pathg. To construct the caustic

1if desired, indirect caustics can be added to a caustic map using the regular expression technique described in chapter 5
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map, the scattering of light paths only takes the specular BSDF components into account. Again, particles
are only stored on diffuse or glossy surfaces.

To accelerate the construction of the caustic map, Jensen suggests the use of projection maps [52]. Many
particles emitted from the light sources may not hit a specular surface, and will not lead to caustic photons.
A projection map encodes the solid angles through which specular surfaces are visible from a light source.
Particles only need to be emitted into these directions, preventing emittance of unnecessary particles in
other directions.

The photon tracing pass results in two sets of particles, one for the caustic and one for the global map.
When participating media, such as smoke or clouds are present in the scene, a third map, a volume photon
map, may be constructed [53].

Usually in the context of photon maps, particles are referred phatonswhich we will also do in the

remainder of the chapter.

8.2.2 Photon data structure

Since all photons are stored, a memory efficient data structure for a photon will reduce storage requirement.
By clever encoding of the power and the direction of the photon, it is possible to reduce the memory

needed by a single photon to 20 bytes [50, p.70].

8.3 Radiance reconstruction from the photon map

The radiance reconstruction tries to estimate the outgoing radiance on the surfaces in the scene using the
set of photons in the photon map. This reconstruction problem can be formulated as a density estimation
problem £8.3.1). The photon map reconstruction usearest neighbodensity estimation, where a num-

ber of nearest photons are located around the reconstruction point and used in the eg8ii®&e ({This
reconstruction is only approximate given the limited number of photon$8.B13, we will analyze impor-

tant characteristics of the reconstruction and discuss several extensions and improvements. Section 8.3.4

contains some remarks about how to efficiently query the nearest neighbors.

8.3.1 Density estimation

The field of density estimation addresses the problem of estimating a certain probability density function
(pdf) from a number of observed samples. We will now introduce the necessary basics of density estimation
and summarize the most important methods in density estimation.

More information on density estimation in general can be found in the excellent book by Silverman [98],
which provides many practical insights in the method (compared to the focus on the asymptotic behavior of

the estimators in many other density estimation papers).
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8.3.1.1 Problem statement

Let p(x) be an unknown probability density, witha (possibly) multi-dimensional vector in a domaiy.
Given a number of observed samplegenerated according fa(x), density estimation tries to reconstruct
the pdfp(x) over the whole domaif. We are concerned withon-parametriddensity estimation, which
means that we do not assume tpét) follows some known distribution (e.g., a normal distribution), for
which only its parameters must be estimated (e.g., the mean and the standard deviation).

Since only a number of point samples are given, some degree of smoothing must be applied to the

samples in order to reconstrupfx).
8.3.1.2 Three important methods

Three very important methods in density estimation are the histogram method, the kernel method, and the
nearest neighbor method. For simplicity, formulas will be given for the estimation of a one-dimensional

pdf. These are straightforward to extend to higher dimensions [98].

Histogram method The histogram method defines a number of binQjrand just counts the number of
samples that fall into each bin. Lktbe the width of the bins, and the number of samples, thgiix) is
approximated as

p(x) = Nilh x number of samples in same binxas

The histogram method results in a piece-wise constant approximation; the estimate is constant over each
bin. The size of the bin determines the amount of smoothing of the data. Larger bins reduce the variance in
the estimate, but introduce more bias.

Heckbert was the first to recognize that radiance reconstruction from particles can be formulated as a
density estimation problem [40]. In a particle tracing radiosity algorithm, he uses the histogram method,
but adapts the bin sizes so that each bin exhibits about the same variance. This method was explained in
some more detail i§7.8.2.

The histogram method is inferior both to the kernel and the nearest neighbor method, because of the
discontinuities in the approximation. Also, the choice of origin of the bins can have an important influence

on the estimates, which is undesirable: just shifting the bins can result in other estimates.

Kernel method The kernel method places a normalized kernel function aroware estimatep(x) by
weighting all samples that fall within the kernel support. Eétx) be a kernel centered around the origin
and normalized:

K(x)dx = 1.
Qx
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The kernel estimate is then given by

B(x) = Nlhiiy((x;]x‘) . (8.1)

whereh, thekernel widthor bandwidth determines the amount of smoothing. The kernel estimate can be

interpreted as a summation of copies of the kernel placed on each sample point. By increasing the number

of sample points, a limit distribution is obtained:

tm poo = [ &

X

(X;]Xl> p(X) dX .

The limit distribution is the convolution of the kernel with the actual probability density. This shows that
just increasing the number of samples will not lead to a correct result. A consistent estimator requires the
bandwidth to decrease with the number of samples.

Adaptive bandwidth kernel methods, that choose a variable bandwidth foxéackach sample point
X;), can better adapt to variations in the density of the samples and do provide consistent estimates.

In graphics, kernel density estimation has been used to reconstruct a finite element solution from par-
ticles [93, 118, 122]. Walter's dissertation [121] provides the most elaborate adaptive kernel method for
this problem. In [P5] we presented a progressive algorithm that uses an adaptive kernel method to perform

density estimation in the image plane.

Nearest neighbor method A third method, nearest neighbor density estimation, reconstp(aisby
locating theM nearest sample poinis aroundx. Let dy(x) be the (positive) distance of thé-th nearest
sample with respect tq then thegeneralized nearest neighbor estimatgiven by equation (8.1), but with

the bandwidthh replaced by the distanak (x):

M VS
P09~ a0 ZK(MJ '

The amount of smoothing is now determinedMythat, in turn, determines the bandwidth of the estimate.

Thus, the nearest neighbor method provides an adaptive kernel method. The estimate is contiquous in
but its derivative is not, becausg (x) has a discontinuous derivative whenever the set of nearest samples
changes. This fact complicates mathematical analysis of (asymptotic) error properties of the estimate.

On the other hand, nearest neighbor methods can be computed efficiently, which makes it quite a popular
method. Fast algorithms are available for finding nearest neighbors, and the amount of work to evaluate
the estimate is bounded I, the fixed number of nearest neighbors. In the (adaptive) kernel method , all
samples within a certain area have to be evaluated, and this number is not bounded.

The standard nearest neighbor estimasea special case of the generalized estimate, where a constant

kernel is chosen. The estimate reduces to



CHAPTER 8. PHOTON MAPPING 149

In graphics, the nearest neighbor method is used to reconstruct the radiance from photon maps. Additional

properties of this method will be discussed further on.

8.3.2 Nearest neighbor radiance reconstruction

8.3.2.1 Radiance reconstruction as a density estimation problem

The problem of reconstructing radiance from a set of photons is slightly different from plain density esti-
mation. In density estimation each sample has a unit weight, because it is an exact sample of the pdf to be
estimated. We have to reconstruct a radiance function, which is not a pdf, using photons that can have an
arbitrary weight, depending on how they were generated§3de?). This weight must be accounted for in
the estimates.

Another difference is that we want to reconstruct the outgoing radiance; thus the photons, that represent
incoming radiance, still have to be weighted by the BSDF.

Given these differences, a standard, two-dimensional, nearest neighbor (NN) estimator for the radiance

leaving a planar surface iis given by

M -

Note that the number of light paths traced in the particle tracing psis hidden in the photon poweg
(see§3.4.2). Note also that in the two-dimensional NN estimator, the sum of sample weights is divided by
the area of the smallest circle centered ithat encloses thil nearest samples=(1d3 (x)).

The evaluation of this estimator requires finding enearest photons to a poirt The BSDF is
evaluated for each photon, but always in the paiitself. So for the BSDF evaluation, it is assumed that
all photons arrive precisely iR. The distance to the furthest photon is used to compute theralfpx),
that determines the local density of photons.

The estimate (8.2) assumes that all nearest photons arrive on a planar surfacexahesrtthe corners
in a scene this may not be true. What happens in this case is discussed, together with other properties of the

estimator, in the analysis of the reconstruction §8.3).
8.3.2.2 Radiance reconstruction as a Monte Carlo estimator

The radiance estimate (8.2) can also be derived as a standard Monte Carlo estimgBo4.2138 it was
shown that a measurement could be estimated by the inner product of a self-emitted directional importance
function with the radiance approximation defined by a set of particles.

The radiance reconstruction infrom a photon map corresponds to a particular choice of the self-
emitted directional importandNe(x) (y — w). This function is defined for any surface pojntit defines the

self-emitted importance in any point given that we want to reconstruct radiancecin
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The functionWem is chosen as follows: The relation between the incoming radiance (w.r.t. projected
solid angle) inx and the outgoing radiance (in a given directiog) is given by the BSDF. By choosing
the BSDFfs(x,w — w)y) as the self-emitted directional importarméx) (y — w), the inner product with
the incoming radiance gives the outgoing radiance far the given outgoing directiom,. However, no
photons will arrive inx exactly, so an average over a certain circular dgeis taken, withd the radius of a
circle aroundk. The directional importance is then given by
fs(X,00— )

Wy — ) =4 T
0 when|y—x||>d

when|y—x| <d

This leads to the following estimator:
[Ixi—x||<d
No > @ fs(x, 0 — o)
Lix— o) = e, 0 = 5 W (x; — ) - g = —
=1

T (x)

In this estimator, the first sum is taken over all photgjm\ﬂ/éX) will be zero for photons at a distance larger
thand. The second sum only includes the photomsside the circular area aroumxd

The expected value of the estimator is given by

E [L(x — wo)] /Ad o, We(y — @)Li(y — w)d wdy

1
= o L L ot a)dody.

This is the convolution of a constant kernel defined o&gwith the reflected radiance (except that the
BSDF is always evaluated i), which conforms to the expected values of standard density estimators.

The radiugd can be chosen arbitrarily. If it is chosen as the distance tithenearest photon to, then
the resulting estimator fo(k/ve(x), L;) is given by equation (8.2).

Jensen presents a slightly different derivation of the estimator, based on the differential flux of a parti-
cle [50]. While the resulting estimators are the same, alternative formulations, such as ours using a specific

Monte Carlo estimator, can provide additional insight.

8.3.3 Reconstruction analysis

This section provides an analysis of the radiance estimate from the photon map. We will analyze several
properties of the estimator, some of which are inherent to all nearest neighbor estimators, while others are
introduced by the difference between the radiance estimator and standard density estimators. The following

properties are discussed:
e The effect of searching for the nearest photons inside a sphere instead of a;8iigla.().

e The impact of varying photon power§g(3.3.2).
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Figure 8.1: The use of a sphere to locate the nearest photons may include wrong photons, or photons at a distance
different than when they would have hit the tangent plane ifthis can lead to an underestimation of the area (and a
corresponding overestimation of the radiance).

e Boundary bias{8.3.3.3).

e Radiance discontinuities and filterings(3.3.4).

e Consistencyg8.3.3.5).
These properties are important for the next chapter on density control.
8.3.3.1 Nearest photons in a sphere

In the radiance estimate, it was assumed that all relevant photons arrive at a planar surface.afonind
curved surfaces or near abutting surfaces, this assumption does not hold. This is why the nearest photons
are located in a sphere arouxdThe circular cross-section of the sphere is used as the area estimate.

This introduces additional approximations in the radiance estimate: photons may lie closer by or further
away compared to the case where they would have hit the tangent pban€hirs is shown in figure 8.1.

These effects can cause a slight overestimation of the radiance, which is sometimes visible in corners
(e.g., the case shown in figure 8.1)

Jensen mentions that using a disk or an ellipsoid (by compressing the sphere in the direction of the
normal) can lower such errors [50], because fewer ‘bad’ photons will be included. This would make the
nearest neighbor queries slower, though, since testing if a photon lies within a disk or an ellipsoid is more

expensive.
8.3.3.2 Photon powers

The radiance estimate accommodates varying photon powers. Although the varying powers do not change
the expected value of the estimator, they have an important influence on the variance of the estimator.

The variance of the estimator is directly proportional to the variance in the power of the different photons
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Figure 8.2: Nearest photon queries near object boundaries will only include photons at the inside of the surface. This
leads to an overestimation of the area (left) compared to queries that stay fully inside a surface (right). This effect is
called boundary bias.

(because their power appears in the estimator sum). Therefore, it is very important to keep this variance
low.

Particle tracing should follow an analog simulatidj3.d4.2.2) as close as possible. A perfect analog
simulation results in an equal power for all photons, but requires direction sampling to be proportional to
the BSDF times the cosine, which is not possible for all BSDF models.

Peter and Pietrek, for example, presented a method for importance driven construction of photon
maps [81] that guides more photons to important parts in the scene. Their method results in highly vary-
ing photon powers, and is not suitable for direct radiance reconstruction; it was only used for importance
sampling with the photon map.

Our density control framework in the next chapter will make sure that the photon powers remain homo-

geneous. The photon powers may differ a lot, but not locally within a small area.
8.3.3.3 Boundary bias

The termboundary biasndicates bias due to an underestimation of the density near the boundaries of the
domain. Consider, for example, an isolated rectangular surface. At the boundaries of the rectangle, the
sphere enclosing the nearest photons will have to grow larger because no photons are found outside of
the rectangle (see figure 8.2). The larger sphere causes a larger area estimate, and thus a lower radiance
reconstruction. The radiance darkens near isolated surface edges.

In kernel density estimation, there are a number of ways to remedy this problem:

e Kernel mirroringmirrors the part of the kernel outside the domain back into the domain and uses the

samples found there. Shirley et al. used this method in their 1995 density estimation paper [93].

o Kernel rescalindinds the intersection of the kernel with the domain and scales the kernel accordingly

(kernel support area divided by the intersection area). In rendering this has been used in [122].

These two methods depend on a geometrical description of the domain and run into problems with complex

geometry.
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With filter

Without filter

With filter

Figure 8.3: A caustic map, with and without filtering (Epanechnikov kernel). With filtering, blurring is reduced.
(64.000 caustic photons, 200 nearest photons in the reconstruction)

Jensen [50] and Christensen [P10] suggest the use of kernel rescaling by finding the convex hull of the
nearest photons to determine a better area estimate. This effectively reduces the boundary bias, but at the

cost of a more expensive reconstruction.
8.3.3.4 Radiance discontinuities

Radiance discontinuities cause a sharp change in the density of photons. This is especially problematic
when the radiance and thus the density drops to zero. Finding the nearest photons in the dark area will
include photons at the boundary of the bright area.

In the case that the radiance drops to zero, the reconstructed radiance falld 4ff agherer is the
distance to the radiance discontinuity. This is illustrated in figure 8.3 (unfiltered parts). Radiance leaks
under the ring into the shadowed area, due to the nearest neighbor search. In nearest neighbor (NN) den-
sity estimation, this is referred to as theavy tailsproblem: the tails of the distribution are significantly
overestimated.

In an area that receives no photons at all, the standard radiance estimator (8.2) will not even converge
to the correct solution with an increasing number of photons, since always a number of nearest photons on
the nearest discontinuity is used.

A solution to this problem is filtering the photons by certain filter kernel. This corresponds to going
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from standard NN to a generalized NN estimator. Given a filter kekfieghe radiance estimate becomes

[Ixi—x|

S @ fs(x, @ — wo) K (G
o (x) ’

L(x — wp) = (8.3)

whereX is a normalized kernel on the unit circle. Note that thiactor disappears in this equation; this is
because a box kernel, which was used in the standard estimator, evalugta®tothe unit circle.

Any kernel that evaluates to zero on its boundary, will lead to a consistent estimator in a photon-less
area: increasing the number of photons will cause the nearest photons (at the nearest radiance discontinuity)
to lie closer to the boundary, reducing the estimated radiance.

The exact choice of the filter kernel is not overly important [98]. Jensen suggests the use of a cone filter,
a Gaussian filter or a specialized filter based on differential checking [52].

We use an Epanechnikov kernel, commonly used in density estimation because of its good theoretical

qualities [98]. The 2D Epanechnikov kernel is given by

=l 2, [~ x]?

Keol“gur0 /=7 @

).

This turns out to be very efficient to evaluate, because the nearest neighbor queries return a set of photons
together with the squared distancext(at least in our implementatioh)Figure 8.3 shows a comparison of
a filtered and unfiltered reconstruction for a caustic map. In the filtered parts the blurring is reduced.

Some more advanced nearest neighbor reconstruction techniques were presented by Myszkowski [75].
These techniques work well when a high number of photons is used in the reconstruction, and were used

for a direct visualization of the photon maps.
8.3.3.5 Consistency

The bias in the radiance estimate decreases with a smaller gliiBhe variance decreases when more
nearest photons are used in the estimate. For a consistent estimator, both the variance and the bias must
vanish asymptotically. This can be accomplished by increasing the number of photons in the photon map,
and (at a lower rate) the number of nearest photons in the estimate. Apart from the special case mentioned
in §8.3.3.4, the radiance estimate will be consistent.

This is an interesting property of radiance reconstruction with photon maps: by just shooting more

photons, the radiance approximation can be made as accurate as necessary.

8.3.4 Efficient nearest neighbor queries

In the rendering pass, many queries will be performed on the photon map. These queries consume a large

part of the total computation time, and should be as efficient as possible.

2The cone filter requires a square root of the squared distances, while the Gaussian filter evaluates an exponential function per
photon
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A data structure for efficient nearest neighbor queries is the kd-tree [11]. The number of dimensions in
the search space is given by ‘k’, so in the case of photon maps, a 3d-tree is constructed.

A kd-tree is a binary tree. Each node contains a single photon and splits the (remaining) search space
in two half-spaces along a single dimension. The remaining photons are divided according to which half-
space they belong to, and two subtrees are constructed recursively. The splitting dimension is indicated by
a flag in the node. The split is best performed in the dimension that shows the biggest spread of the photon
positions.

Most efficient is a balanced kd-tree, where the depth of the left and right sub-tree in a node differs by
at most one level. A left balanced kd-tree fills nodes (breadth first) from left to right. Such a tree can be
represented in a contiguous array; children of a node are obtained by simple index arithmetic, saving two
child-pointers that are needed in an unbalanced tree. The memory gain is significant, because the photon
data structure is already small in size.

In our implementation we have added support for both unbalanced and balanced kd-trees. An unbal-
anced kd-tree is useful for querying the photon ndaping its construction. This will be needed in our
density control framework.

More details and an example implementation can be found in [50]. Our implementation is available

through theRENDERPARK source code [9]. A few more optimizations can be found in [P9, P10].

8.4 Rendering with photon maps

The rendering pass in photon mapping is based on stochastic ray tracing and uses a fairly standard multi-
pass configuration. Figure 8.4 shows a schematic overview of the different contributions in the rendering
pass.

When tracing an eye path, the different radiance components are computed as follows:

e Specular component:The specular component is always computed by extending the eye path, send-

ing out a specularly scattered ray.

¢ Diffuse and glossy componentThe diffuse and glossy component of the reflected (and refracted)
radiance can be computed in two ways: an accurate estimate or an approximate estimate using the

global photon map:

— Accurate estimate: The accurate estimate computes the direct illumination by explicitly sam-
pling the light sources. Caustics are reconstructed from the high density caustic map, and in-
direct illumination is computed by final gathering. For the final gathering, many scattered rays

are traced (usingD|G) components only) to sample the incoming radiance.
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@) Accurat.e estlmat.e used Global map used.
@ Approximate estimate used

Caustic map used.

Caustic map used.

Figure 8.4: The different contributions when rendering with photon maps.

— Approximate estimate: The approximate estimate reconstructs diffuse and glossy radiance di-

rectly from the global photon map.

The accurate estimate is used whenever a path has not been scattered with a diffuse or glossy compo-
nent, thus on directly visible surfaces and after one or more specular reflections or refractions. The
approximate estimate is used for the final gather rays, thus as soon as a diffuse or glossy scatter has

taken place.

Note that the self-emitted radiance, which is not present in the radiance reconstruction from the global
map, does not have to be taken into account: if a final gather ray hits a light source directly, it would
contribute to the direct light, which is computed separately in the accurate estimate. Alternatively, a final
gather ray might hit a light source after some specular reflections. Also in this case the self-emitted radiance
should not be included, because it would contribute in the form @fSa (D|G)) path, that is already
handled by the caustic map.

The final gathering masks the errors in the radiance reconstruction from the global map. However, the
error on surfaces very close to the point where final gathering is performed, may be visible in the accurate
estimate. This case is shown in figure 8.5. The wall close-by (red rays) covers a large part of the hemisphere
with respect to the final gathering point. The error in the reconstruction in that area will have an important
influence on the error in the final gathering estimate. Therefore, the low-frequency noise of the radiance

reconstruction along the contact line between the floor and the wall, may show up in the final gathering.
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Figure 8.5: A final gather for a point near a corner. Many rays will hit the close-by, abutting surface. The errors in
the radiance reconstruction in the encircled area may be visible in the final gathering result. Therefore, secondary final
gathers are performed for rays that only travel a very small distance.

Jensen identified this problem [47] and uses the accurate estimate again when the distance traveled by a final
gather ray is under a certain threshold. In the close-by hit poisézandaryfinal gather is performed

Looking at how the different stored radiance solutioB&(Rs) are used, the paths covered in the final
image can be identified (ignoring the secondary final gathers). Three stored solutions are used: the caustic
map, the global map, and the self-emitted radiance (which is also considered as ‘stored’ radiance, see also

chapter 4):

e Caustic map: This map coverd S™(D|G) paths, which are read by eye paths that may have been

scattered specularly. The total transpoit® (D|G)S‘E.

e Self-emitted radiance: The self-emitted radiance is used for the direct light in the accurate estimate

and when a specular path hits a light source dire¢t{f2|G)S*E + LS*E paths are covered.

¢ Global map: The global map stordsX*(D|G) paths and is used after final gatherif§*(D|G)S*E)
paths). The paths covered até*(D|G) S*(D|G)S*E.

Summation of these contributions shows that the rendering via photon mapping covers all illumination

exactly once. A complete global illumination solution is obtained.

3In figure 8.5 the problem is exaggerated for illustration purposes: in practice, only a very small region near the corner will require
a secondary final gather.
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8.5 Optimizations

The most expensive part in photon mapping is the rendering pass, and more specifically the final gathering.
Accurately sampling the incoming radiance can require up to a few thousand final gather rays. Each such
ray will initiate a query in the global map. Typically more than 95% of the rendering time is spent in final
gathering. Therefore, many optimizations have been added to the rendering pass to speed up this process.
Several of these are aimed at speeding up the photon map qu&ied (58.5.2), while others try to
decrease the number of expensive final gathg8<5(3). These optimizations are crucial for an efficient
algorithm. We will only briefly outline the optimizations, as our work focuses more on the construction of

photon maps. Additional information can be found in the supplied references.

8.5.1 Maximum search radius

Specifying a maximum search radius when searching the kd-tree for nearest photons can greatly speed up
the query. In sparse regions, where the photon density is very low, large parts of the kd-tree will be searched
in order to find the nearest photons. Since the nearest photons will span a large area, the radiance estimate
will be very low, while the bias may be relatively high (e.g., when photons from a high density region are
erroneously included).

A good maximum search radius can prevent searching unnecessary parts of the tree. However, when the
radius is set too small, not enough photons will be found, and the estimate may become inaccurate, while a
large radius may not improve the query time.

We use a heuristic to automatically determine a suitable maximum radius. The radiance estiate for

nearest photons is given by (8.2):

M@ (X, @ — wo)

-1
N Gy (x)

If this estimate results in a very low radiance, we should have decreased the search radius. The question
now is when a radiance value can be labeled as low. A saindfientradiance estimate can be constructed

by consideringll Ng photons in the photon map. The ambient radiance is given by

i b_izil\rl(ﬁfs()(,wi%wo)
amb — )
N g,

wheredy,, is the radius of the sphere enclosing all photons.
A radiance estimate is labeled as low when it is below a certain small percemtafjthe ambient

radiance. The maximum radius is reached when
dmax<:r\> L - aLamb

We simplify both estimates by replaciggwith an average photon powes,g and by replacing the BSDF
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evaluation by an average diffuse BRIPk,g/Tt The equality becomes:

l M '(Pavgpavg/ L —q. 1 No - (Pavgpavg/ 1
N T2 . N TIIZI,%(D ’

Many factors cancel out, leading to the following expression for the maximum radius:

g M-di,
max — C(Nq> .

This maximum radius can now be supplied with the photon queries

Christensen proposes a slightly different heuristic [P9], but it is based on the same idea: deriving the

maximum radius through a radiance threshold. His heuristic is given by

max — T[H I—t ’

with @max the maximum photon power present in the map, larmluser defined radiance threshold. A minor

difference is that the radiance threshold depends on the scene (i.e., on the total self-emitted radiance), while
our percentagea does not. Both heuristics perform well and show the same square root dependéhce on

The speedup is especially noticeable with caustic maps, since these typically have many regions of low
density. For balanced kd-trees, visualizing the caustic map can be easily twice as fast, while for unbalanced

trees the speed-up can be even better.

8.5.2 Irradiance precomputation

The radiance estimate in the global map can tolerate quite some error, due to the final gathering. Chris-
tensen [20] recognizes this and proposes a preprocessing step that precomputes irradiance with the global
map in a limited number of positions (namely the photon positions).

After the construction of the photon map, irradiance is precomputed for all photon positions and stored
with the photon. During rendering, the diffusely reflected radiance can now be estimated by just looking
for the nearest photon and multiplying its precomputed irradiance value with the diffuse BRDF.

Irradiance, however, depends on the normal of the surface, as it is an integral over the upper hemisphere.
Therefore, the normal of the surface that was hit by a photon, is also stored with that photon. The query for
a nearest ‘irradiance’ photon will only accept photons that have a similar normal, ensuring a good irradiance
estimate. The resulting radiance reconstruction shows the Voronoi regions of the irradiance photons.

Storing both the irradiance and the normal with a photon increases memory demand, but the speed-up
is large, because only the single nearest photon has to be located. Christensen reports speed-up factors of
up to 6, which was confirmed by our implementation and experiments.

For the caustic map, this approach is not used, because a higher accuracy is needed for the direct
visualization.

For more information, refer to [20, P10] or to [9] for an implementation.
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8.5.3 Irradiance caching

While the two previous techniques try to accelerate the photon queries, the irradiance caching optimization
tries to reduce the number of final gathers. Irradiance caching was presented by Ward et al. in 1988 [126]
as a general acceleration technique for computing indirect diffuse illumination in stochastic ray tracing.

The main idea is to accurately compute a final gather in a selected number of points in the scene only,
and to interpolate these results for all points in between. The high level algorithm is shown in algorithm 4.

The details on the caching and interpolation can be found in [126, 67]. Our implementation was inspired
by the implementation in the freely available Radiance system [124, 14].

By computing the gradient of the irradiance in the sample points with respect to a change in position or
orientation, a better interpolation can be performed without much extra work [125].

Since irradiance is cached, the specific distribution of the incoming radiance is lost, and only diffuse
radiance can be computed using this method. The irradiance multiplied by the diffuse BSDF results in the
scattered diffuse radiance.

The speed-up obtained with irradiance caching can be enormous. Depending on the accuracy, which
has to be chosen by the user, only a small fraction (e.g., 1%) of the indirect diffuse illumination evaluations
needs to be done with an expensive final gather. Since final gathering dominates the computation time, this
can lead to speed-up factors of 100 or even more, depending on the scene.

However, the accuracy has to be chosen carefully, otherwise interpolation artefacts may become visible.
The results in the next chapter on density control do not use irradiance caching in order to make certain that

these artefacts do not interfere with our comparisons.

8.6 Conclusion

Photon mapping provides an elegant algorithm to compute global illumination in complex scenes. The
photon storage is independent of the geometrical complexity of the scene, which is one of the important

advantages over finite element methods.

Algorithm 4 Irradiance caching: high level overview

e Compute indirect diffuse illumination in x:

— Find all cached irradiance points that are valiciThe validity radius is determined by a user-
defined accuracy and the scene geometry (points close to other geometry, e.g., in corners, will
have a smaller validity radius, because the irradiance will change more rapidly in these regions).
This radius is computed together with the accurate final gather.

— If the number found< user defined minimum (Ward usgéswe use3 for a better interpolation)
+ Generate a new point in the cache by an accurate final gather.
— else interpolate between all the cached values
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Rendering with photon maps requires a final gather and rather expensive nearest neighbor queries, but
several intelligent optimizations reduce the rendering time dramatically. We described several optimiza-
tions, including a novel maximum radius heuristic, that we have all implementeRENOERPARK. Tests
with several scenes showed a speed-up factor of up to 300.

But several other optimizations are possible, many of which are applicable to other global illumination
algorithms as well. A few examples are parallel computations, the use of quasi-Monte Carlo sequences to
obtain a more even distribution of photons in the scene, and the use of shadow photons to accelerate the
computation of shadows.

Most of the optimizations are targeted towards the rendering pass, since that is the computationally most
expensive part. In the next chapter we will focus on the construction of photon maps, in order to reduce
memory requirements and to introduce some level of error control into the photon map construction.

We conclude this chapter with a few examples. Figure 8.6 shows a few scenes rendered with photon

mapping INRENDERPARK. Note the indirect illumination and the caustic effects.
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- Eggs - - Glass knot -

- Earth, wind, fire, water and photons -

Figure 8.6: Three images rendered using photon mapgRENDERPARK. Note the caustics and indirect illumination.



9 Density control for photon maps

In this chapter we will focus on techniques to construct memory-efficient photon maps. A technique is

presented to control the density of photon maps according to a certain target density criterion. Such a
criterion is derived from an initial eye-based pass that computes the importance of each point in the scene
with respect to the viewpoint. The method results in fewer stored photons and leads the way to a full error

controlled photon mapping algorithm.

9.1 Introduction

While very realistic images can be computed efficiently with photon maps, as we have seen in the previous
chapter, photon mapping is not (yet) the perfect global illumination algorithm. Several difficulties still need

to be addressed:

e The accuracy of the radiance reconstruction with a photon map is controlled by two parameters: the

number of light paths shot in the particle tracing pass (this determines the number of photons in the

map), and the number of nearest photons used in the reconstruction. A more accurate radiance solu
tion is obtained when both the number of light paths and the number of nearest photons is increased.
Itis, however, not obvious how large these numbers should be in order to obtain a sufficiently accurate
photon map. The required accuracy for the photon maps depends on the illumination in a specific
scene and on the viewing parameters in that scene. Hence, the parameters have to be determined

individually for each scene.

Currently these parameters have to be chosen by the user. This requires an experienced user who un-
derstands the techniques behind photon maps and the radiance reconstruction. It would be preferable
to have an automatic procedure to determine these parameters. Developing such a procedure requires

a full error analysis of the photon map, which is very difficult.

e Another important issue with photon maps is memory utilization. Storing all the individual photons
can take a lot of memory, even when a single photon requires only around 20 bytes. Especially com-
plex, accurate caustics or large scenes require many photons. Since many nearest photon queries
are performed during the rendering pass, all photons should be kept in main memory for fast ac-
cess. Storage on a hard-disk, as is done in density estimation [93], would slow down the rendering

considerably.

During photon tracing, some regions in a scene, for example the bright parts in caustics or unimpor-

tant parts of the scene, may already have received enough photons while other regions still need more.

163
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Reducing the number of stored photons in these over-dense regions, without sacrificing accuracy, can

reduce the memory requirements of photon maps significantly.

The density control framework, which we present in this chapter, offers some answers to these problems.
First, a method is presented to control the local density of a photon map based on a required or target density
criterion. When a photon arrives in a region that already has a sufficient density, it will not be stored, but its

power will be distributed among nearby photons in the map. This approach has two main advantages:

e The density of photon maps can be controlled locally in the scene. Less photons are stored in over-

dense or unimportant regions. This can reduce memory requirements quite effectively.

e The concept of a required or target density offers an interesting framework for error control in photon
maps. Since the density of photon maps is related to their accuracy, a high density should be chosen
for important regions in the scene. The target density can be chosen arbitrarily and can be based on

principles like view importance, relative error, visual masking by textures, . ..

We derive a target density criterion based on importance. In a new, initial pass, importance maps are
constructed that indicate how important regions in the scene are with respect to the viewer. A simple

heuristic relates importance to the target density of the photon map.

Results obtained with the density control framework show a significant reduction in the number of stored
photons, both for the caustic and the global map. But maybe even more important is that the density control
framework, together with importance, leads the way to error control. Accurate error control will eventually
lead to a fully automatic photon map construction, where the user does not have to guess an appropriate
number of photons in the map or the number of nearest photons in the reconstruction. In our opinion, this
is the biggest remaining challenge in the photon mapping method.

Section 9.2 introduces and analyzes our density control technigg@.3an error analysis for rendering
with photon maps is developed, which leads to an importance based target density criterion. The practical
computation of importance requires a new, initial pass that computes importance§®dps\(/e present
two alternatives for computing importance: one based on nearest neighbor density estimation, similar to
the photon map, and another based on path differentials. Results of the density control for both the global
and the caustic map are presentefdrb. We finish the chapter with a comparison to other approaches for
controlling the photon map densit§9.6), draw some conclusions and indicate interesting directions for
future research towards full error contrg9(7).

An overview of the resulting importance driven photon mapping method developed in this chapter is
given in algorithm 5.

Some parts of this research were previously published in [P6] and [P9, P10].
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Algorithm 5 Importance driven photon mapping with density control: overview of the algorithm
1 Compute an importance map by tracing eye paths
(importons) from the viewer (gives a target density)
2 while(photons to trace/store)
trace photon
if (density of photon map at this photon position <
target density)
store photon
else
distribute photon power over nearest neighbours
3 Render an image as with the standard photon map method
(but with less photons stored in the maps)

9.2 Density control framework

9.2.1 Overview

The goal of density control is to adapt the actual density of a photon map to a certain given target or
required density§9.2.2). When tracing a new photon, the current density of the photon map will be evalu-
ated §9.2.3) and compared to the target density. If the density is too low, the photon will be stored.

If the current density is already sufficient, we do not want to store the photon. However, we cannot
just discard it, because energy would be lost, leading to an incorrect radiance solution. We account for
the discarded photon by distributing its power over neighboring photfhg.4). This ensures an energy
balance and keeps the photon powers in the map homogeneous, which is very important for a good radiance
reconstruction §9.2.5). An analysis of the redistribution results and some improvements are presented

in §9.2.6.

9.2.2 Target density

Density control requires the specification of a target density throughout the whole scene. The target density
in a pointx will be denoted byDiar(X).

The results in this section will all use a hand-picked constant target densi¢@.3rwe will derive a
target density criterion based on importance.

Note that our definition of the target density does not include the direction. An alternative definition
could take into account the directions of the photons when estimating the current density. This would require
an extension of the target density Bgy(X,w). Since both estimating the current density and specifying
the target density would be more complicated, we currently use a target density that is independent of the
direction. For diffuse surfaces this makes no difference, but for highly glossy surfaces a directional density

might give better results.
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9.2.3 Current density

Let ®;(x,wj,®;) be a new photon that arrivesxon a surface, with an incoming directios) and a power
¢;. To determine whether the photon needs to be stored, the current density is estimated by locating a
number of nearest photons. Rdrnearest photons, the current density is given by

M
Deur(X) = m

If Deur(X) < Diar(X), the photon is stored; if not, its power is distributed.
Note that this estimate requires a photon map qdernjng the construction of the photon map. There-
fore, our implementation stores photons directly in an unbalanced kd-tree during the construction, so that

the query is efficient.

9.2.4 Photon redistribution

When a photon is not stored, its power must be accounted for. This can be done by distributing the power
over the nearest photons.

The radiance reconstructionxnincludingthe newly arrived photor, is given by

i 1 Z:\il(ﬂ fs(X, 0 — o) + @ fs(X, Wj — wy)
L X — (*)O = —
( ) N ﬂd§A+l(x)

Note that the radiudy (x) without photon®; stored, is equal to the radidg 1 (x) with ®; stored, because
the photon is located preciselyxn
Since the photon is not stored, the power of the other photons must be adjusted in such a way that the

reconstruction ik would deliver the same (or at least a similar) result:

. 1 3M1(@+Ag ;) fs(X, 00 — wo)
L= o) = § == ’

whereAq ; denotes the power adjustment of photbndue to not storingp;.
Different choices forA@ ; can be made depending on the BSE¥-the incoming direction, or the

distance ok to a photord;:

e BSDF fs(x,w — G}): To get an equal reconstructidrix — @) in X, A@ ; should be zero for
photons that havés(x,w — wy) = 0: Since the BSDF is zero, these photons can not contribute to
L(x — wo). Any power assigned to such photons would not be taken into account in the radiance

reconstruction irx.
Currently, we test the angle between the photon direaioand the normaNy in x to determine

whetherAq ; should be zero (i.e., for a non-transparent matefi@l; = 0 whencogwi, Nx) < 0).

e Incoming direction: Another approach would be to choose a larger delta for photons with a direction

similar to the distributed photon. This might be better for non-diffuse BSDFs, but at the cost of a
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less smoothly varying photon power: photons with different incoming directions may accumulate a

varying amount of energy.

e Distance to x: The distribution of the photon power can be seen as applying a low-pass filter (or as

splatting). The dependencedf ; on the distance ta is determined by the filter kernel.

We distribute the power equally over the affected photons (a box filter) to keep the photon powers

homogeneous which, as said, is beneficial for the reconstruction.

So to summarize, we choose:

Vi,coqwi,Nx) > 0:Aq =q@;/M’,

with M’ the number of photons that have a positive cosine with respect to the normal.

For diffuse surfaces, this choice results in an equal reconstructimnvitnether the photon is stored
or not. For glossy surfaces, the BSDF evaluation of the other photons may be different from the BSDF
evaluation of the discarded photon. This will result in a difference in the reconstructed radiance. This might
be improved by applying a directionally dependent redistribution on non-diffuse surfaces.

Of course, even in the diffuse case, the radiance estimate at locations othgntiibgive a slightly
modified result. But since the current density is high enough anyway (otherwise the photon would have

been stored), this averaging can be expected not to introduce artefacts.

9.2.5 Russian roulette storage

We have also tried an alternative way to control the density of photon maps based on Russian roulette.

A strictly positive acceptance probabiliBscc is defined as a function of the ratio of current and target

density (e.9.Pacc= max(1— g ]

(t:ar(x)

,0.01)). Russian roulette draws a random number, and if it is smaller
than Py, the photon is stored; otherwise it is discarded. When a photon is stored, its power has to be
multiplied by 1/Psccto keep an energy balance.

However, when the current density approaches the target density, the acceptance probability becomes
very small. In the rare event that a photon is accepted, the power is multiplied by a large factor and becomes
much larger than the power of photons stored earlier. The resulting mix of high and low powered photons
causes a high variance in the radiance estimate. Therefore, we abandoned this approach and developed the

redistribution.

9.2.6 Results and analysis

In this section some results of the redistribution will be analyzed.
A simple scene is used for which a global photon map is computed: The scene consists of a ground

plane and a red blocker plane perpendicular to it. A single small light source illuminates the scene. The
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global map is always visualized directly to clearly demonstrate the effects of the redistribution. Unless
stated otherwise, all images u8@ nearest photons in the reconstruction and also use the Epanechnikov
filter (see$8.3.3.4).

These results were generated on a 1Ghz Pentium Il in a 256MB Dell Inspiron 8000 portable.
9.2.6.1 Constant target density

A first example compares the standard photon map construction with a density controlled construction using
a constant target density throughout the scene. The results are shown in figure 9.1.

The top row (a) shows a standard photon map construction with around 65.000 photons in the map. For
this scene, this required about 120.000 light paths, since many rays traced from the light source miss the
scene. The bottom row (c) also uses a standard photon map with around 400.000 stored photons.

The middle row (b) shows a density controlled solution. The target density was set to 1500 photons
per square meter. The area of the complete scene is 4Bwdt Note that the target density automatically
defines an upper limit for the number of stored photah$Z 000 photons in this case). For the image as
many light paths were traced as for the solution with 400.000 photons. Instead of 400.000 stored photons,
the density control allowed only around 55.000 photons to be stored.

The comparison of the radiance reconstruction brings up some interesting points:

e Overall the illumination is very similar, which is logical because the redistribution was designed to

maintain energy balance.

e The variance in (c) using 400.000 photons is not reduced compared to (a), because the same number
of nearest neighbors is used (80 photons). Note especially the low frequency noise in the red color
bleeding on the floor, which is caused by a mixture of pure red and white photons. The bias in (c) on
the other hand is reduced by the higher number of stored photons, which is evident in the less blurry

shadow boundary.

e The variance in (b) is lower than both (c) and (a). This is due to the redistribution. Excess photons
are distributed over the neighbors, which, in this case, causes red photons to be distributed over white
ones and vice versa. This leads to more homogeneous photon powers and reduces the noise due to the
color variation of the photons (In the end, photons will reach an equilibrium mix of red and white).

This is a fortunate side effect of the redistribution.

e The bias in (b) is about the same as for image (a) because an equal number of photons is stored.
However, for scenes where the target density is low compared to the size of the geometrical detail,

the redistribution can cause a larger bias. This will be illustrated in a later exag8e?).
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Hits Radiance reconstruction

No density control, 65k photons (construction 1.73 secs)

b)

With density control, 55k stored photons instead of 400k, constant target density (26.47 secs)

No density control, 400k photons (11.3 secs)

Figure 9.1: Density control results: The top and bottom row show the hits and radiance reconstruction for a photon
map constructed without density control with a varying number of photons. The middle row used a constant required
density. Overall the radiance reconstruction is similar. The density control even causes a reduction in the variance,
although a smaller number of photons are stored.
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The time to build the density controlled photon map (26 secs) is long compared to the other photon maps
(1.7 secs for (a), 11.3 secs for (b)). It takes about twice as long as the photon map in (c) for which the same
number of light paths were traced. This is because with density control, each photon requires a query for
the nearest photons in the current photon map in order to estimate the current density. For redistribution the
same nearest photons are used, so that only one query is necessary. For these images we used 20 nearest
photons to estimate the density and for the redistribution. Using more nearest photons takes even longer,
but can also introduce additional bias (§8e2.6.2).

As was mentioned, the number of stored photons in the density controlled map is 72.000 when the target
density is reached everywhere in the scene. The time it takes to reach this maximum number can be terribly
long. In the example scene, the region in shadow does receive photons through reflection from the floor
onto the back of the red blocker, but only very few.

Instead of waiting until all regions have reached the target density, it is better to test the percentage
of photons that is being added as new to the photon map. For example, we emit photons in batches of
about 10000 photons. When the number of newly stored photons is a small percentage of that, the photon
construction phase is ended. Some regions will not have reached the target yet, but they are very dark
anyway as the percentage of photons arriving there is proportional to the received radiance. This provides

a convenient stopping criterion for the photon map construction.
9.2.6.2 Target density discontinuity

Since the redistribution uses the nearest neighbors to distribute the power, the same problems with dis-
continuities can be expected as with NN density estimation. This section analyzes what happens with
discontinuities in the target density. The next section looks at discontinuities in the photon density.

Figure 9.2 shows the result of a discontinuity in the target density (left column). For the front half of
the sceneD = 150Q while the rear half haB, = 100 This causes a sharp discontinuity as can be seen
in the bottom left image.

The photon map density adapts nicely to the target density (middle), but the radiance reconstruction
shows a clear overestimation at the dense side of the discontinuity (top). This is caused by redistribution
of photons that arrive in the low density region: the nearest photons include several lower powered photons
in the high density region that receive a part of the power. Many more photons are redistributed in the low
density region, and cause a significant power leak into the high density region.

This overshooting effect leads to the following recommendations:

e To prevent excessive bias, a small number of photons should be used in the redistribution. We use the
20 nearest photons, also in these images, but when more photons are used, the bias at the discontinuity

increases further.
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Radiance reconstruction Radiance reconstruction

Photon hits Photon hits

Discontinuous change in target density Gradual change in target density (linear)

Figure 9.2: Density control with a discontinuity in the target density. The sharper the discontinuity, the stronger the
overshooting effect of light leaking into the higher density region.
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e Discontinuities in the target density should be avoided. The right column in figure 9.2 shows a similar
example, but now the target density changes gradually from high to low. The radiance reconstruction

shows a much lower bias (top right).

We have experimented with several alternatives to the uniform redistribution in order to reduce this bias:

Kernel weighted redistribution  Similar to using a filter kernel in density estimation, we can use a kernel
to weight the power adjustments of the nearest photons. An Epanechnikov kernel results in the following

redistribution:

2
, Xj — X
vi,cogwi,Ny) > 0:A¢ | = ¢, ~%,
whereSis a normalization factor so that all energy)is accounted for:

cog(i,Nx)>0
s= 5 Ix—x|*
|

We have implemented this strategy, but the bias reduction near the hard discontinuity is small. A photon
close to the high density boundary, will find its nearest photons in the high density area, leading to a
relatively large kernel evaluation for these photons. As a result, a large part of the power is still added to

these boundary photons.

Target density weighted redistribution A better weighted redistribution can be obtained by taking into
account the target density of already stored photons. The idea is that in the limit, when the target density
is reached everywhere and all new photons are distributed, the target density at each stored photon position
also indicates the actual density of the photon map. As shown in figure 9.3 the distribution of the photon
power should be inversely proportional to the target density: a larger part of the power should be assigned
to the sparser photons where the target density is lower.

The following weighted distribution is used:

1
Dtar(Xi)

3

0wl

Vi, coqwy, Ny) > 0:0¢ ;=9

whereSis the normalization factois = y*°%® N0 B

andDiar(X;) is the target density at the photon
positionx;.

In a homogeneous target density region, wher®gl(x;) are equal, the redistribution is uniform over
the nearest photons, but near discontinuities the distribution is non-uniform.

Figure 9.4 compares the results using homogeneous and target density weighted distribution. The bias
in the high density region is significantly reduced. The variance in the low density region is slightly higher
near the discontinuity (some darker spots), because the estimate contains a mixture of low powered photons

(high density) and high powered photons (low density).
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Figure 9.3: Density control with a discontinuity in the target density. The photons in the lower density region should
get a bigger portion of the power that is distributed, because the resulting photon power is inversely proportional to the
photon density.

Even redistribution Weighted redistribution

Figure 9.4: Density control with a discontinuity in the target density. Using a target density weighted redistribution
reduces the overshooting significantly.
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The weighted distribution requires the target density in each stored photon position. Re-evaluating
Diar(Xi) each time becomes too costly for more advanced target density criteria, such as the importance
driven criterion discussed further on. In our implementation, we store the target density with each photon,

which requires an extra floating point number in the photon data structure.
9.2.6.3 Photon density discontinuity

Besides target density discontinuities, the density of photons arriving in a region may also contain discon-
tinuities. This happens when the radiance function itself is discontinuous, namely at sharp shadow edges
and object boundaries. In the former case the radiance reconstruction results in a blurring of the shadow
edges §8.3.3.4), while the latter case causes boundary Bas8.3.3). Both effects can be reduced by
shooting more photons.

Near the discontinuity (within the object or at the bright side of the shadow boundary) most of the
nearest photons are located at one side of the reconstruction point, which results in an underestimation of
the local photon map density.

With density control, the current density is also estimated by locating the nearest photons, and shows
the same underestimation. Since photons are stored until the target density is reached, more photons will
be stored near the radiance discontinuities. In turn this will lower the boundary bias, because of the higher
density near the boundary.

This is a fortunate side-effect of using the same nearest-photon procedure to estimate the current density
and in the actual radiance reconstruction. The effect can be seen at polygon boundaries and shadow edges
in the photon hitimages in figures 9.1 and 9.2.

The same effect also occurs near target density discontinuities (figure 9.2), but is less beneficial in this

case. This also stresses the need for smooth target densities and the weighted distribution.

9.2.7 Conclusion

Density control for photon maps provides an interesting framework for adapting the density of a photon
map to a desired target density criterion. Photons that arrive in regions that already have a sufficient photon
density, will not be stored anymore. The photon power is redistributed over the neighbors to conserve
energy. We have analyzed several redistribution strategies, taking into account possible discontinuities.

The target density limits the maximum number of photons in the photon map. Therefore, one can keep
shooting photons until difficult regions have a sufficient density, without worrying about excessive memory
usage in other regions.

The resulting photon maps can be used in the same way as normal photon maps. The photon powers

are homogeneous, which is necessary for a good reconstruction.
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9.3 An importance driven target density criterion

With density control the photon map density can be adapted to an arbitrary target density function. In this
section a target density criterion based on importance will be derived.

When a certain view of a scene is rendered, a photon map does not need a constant accuracy throughout
the whole scene. For example, a caustic far away does not need to be as detailed as one close to the viewer.
Another example is final gathering where a more accurate reconstruction from the global map is required
for close-by surfaces. In this section an error analysis of the rendering pass will provide a heuristic for the
error tolerated in the photon maps for a particular viéa3.1). The error tolerated will then be related to
the target density of the photon mag9.8.2). Using this target density criterion with the density control

from the previous section, we can construct importance driven photon maps.

9.3.1 Error analysis

The pixel flux, computed in the final ray tracing pass, consists of several separate parts: direct illumination,
for which the light sources are sampled directly, caustics, using the caustic map, and indirect illumination
from the global map.

We are interested in the error in a pixel due to reconstruction errors in both the caustic and the global
map. The error analysis is given for the caustic map, but it is similar for the global map.

The caustic map is used for directly visible surfaces and also after one or more specular reflections or
refractions. Let the radiance due to causticd gigthe contribution to the pixel flux is then defined by all
(L.S*E) paths. By defining theaustic importance functigit\t;, as the directional importance function due

to thesg(S*E) paths, the caustic contribution to the pixel flux is given by

® e = /A /Q V(X — w)Lo(X — @) dyo dA, (9.1)
S 21

with Ag the total surface area in the scene

Note that:

e The specific integral (9.1) is not actually computed in the rendering pass, as no explicit representation

of W¢ is constructed. Instead eye paths are traced_giglevaluated for these paths.

e The caustic importance functid is defined by the self-emitted directional importance functdgn
and the eye paths that are coverstH).
Recall that for our pinhole camera modé}; is defined as follows for a certain pixel (s¢&6):

_J 1-3(x—eye) wheny e Apix
We(x —y) = { 0 otherwise
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The importancd™ on a point in a pixel is the integral of the self-emitted directional importance
over the aperturel (X pix) = 1. The importance flux emitted through a complete pixeWisx =

priX I (X pix) dA = Apix. These quantities will be used later on in the error analysis.

The caustic radiance reconstruction from the caustic photon map is only approximate. The reconstruc-

tion errorAL causes an errdx® pjx ¢ in the pixel flux:

® pixc + AP pixc = /A [ W — ) (Lel(x — ) + ALe(x — ©)) dico dA
\S 21

= AD iy = / / V(X — 0)ALe(X — ) dyo dA.
Ae QZn

In this error analysis we will assume surfaces where the caustics are stored, to be Hiffinskependent
of direction), but for storage on glossy materials a directional error estimate might be better. The error can
now be rewritten as follows:
AD pix ¢ :/ (/ We(X — w) dyw )AL¢(X) dA.
s Qo

The integral ovef,y; corresponds to the importanEe (equivalent to irradiance) ir:

This equation formulates the total pixel error in terms of the importance and the reconstruction error. Since
we are interested in a heuristic for the reconstruction error itself, the integral still has to be removed.

The portion of the pixel error due to one particular positiois given by the integrand of equation (9.2):
AD pix c(X) = e(X)ALe(X) .

Bounding this error by a maximum”‘]{;‘(’fc(x) gives a bound for the reconstruction error:

ALg(x) < Amfgf;fc(x) /Te(X).

If each positiorx in the scene is allowed to contribute an equal amount to the pixel error, the reconstruction

error can be bounded by
max

AL < APixe r 9.3
c(X) < A / Te(x), (9.3)

with AQTE = [, APTE(x) dA, andAs the total area in the scene.

From this analysis we learn that the ratio between the pixel flux error and the reconstruction error is
given by the importance. If we can compuitgthroughout the scene (which will be accomplished with a
caustic importance map §9.4) and if we can derive a useful relationship between the reconstruction error
and the photon map density, then we can use that to tune the storage of photons in the caustic map.

A similar error analysis can be performed for the global map. The difference lies in how the recon-

structed radiancég from the global map is used in the final pass, namely after a diffuse or moderately
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glossy bounce. The contributing paths during renderinglagé5*)(D|G)(S|Dsc)E), with D, meaning a
diffuse or glossy bounce that reaches a surface under the distance threshold (too close-by). This results in a

different importancé 4 over the surfaces and requires a separate global importance map.
9.3.2 Target density criterion

Equation (9.3) relates the reconstruction error to the error made in the pixel flux. The next step is to relate
the reconstruction error with the target density of the photon map. This is a very difficult problem. The
reconstruction is a form of nearest neighbor density estimation, for which a detailed error analysis is difficult

and has only been investigated for very specific cases [98].
9.3.2.1 Error-density relation

We assume a simple inverse linear relationship between the error and the degg)ty (

B C
Dcur(x) ’

whereC is the constant of proportionality. When the density increases, the error is assumed to decrease

AL¢(x)

(9.4)

proportionally.
We have obtained good results using this simple, yet adequate heuristic, but finding a better error-density

relation is definitely an important area for future research.
9.3.2.2 A practical target density criterion

Both the relation between the reconstruction error and the importance (eq. 9.3) and the relation between the
error and the density (eq. 9.4) contain a proportionality constant. A good choice for these constants is not
obvious.

Combining the two equations into a direct relationship between the density and the importance provides
a more intuitive choice of the constant.

Substituting (9.4) into (9.3) and combining the two constants with the total scene area gives the follow-
ing relation:

Deur(X) > C/FC(X) )

whereC’ = Ag-C/APTX

pix,c*
In [P9] we presented an intuitive approach to deterndihieased on the importance on the image plane:
e The importance of a positiorsc; on the screen i (Xs¢) = 1. (As mentioned before, this follows

from the definition of\; and the fact that we use a pinhole camera).

e A target pixel densitys chosen asM; /Apix. This density corresponds to a unitimportance. The user
can choose the number of target photbhper pixel. A higher number leads to a denser photon map

and a higher accuracy.
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Dtar(x) = I (x) - Mt/ pixel

Figure 9.5: The target density is proportional to the importance in the scene. The proportionality constant is defined by
choosing a number of required photons per pixel (where the importarigevidnich is then scaled by the importance
I (x) to get the target density x

e Given the importance on a positiarin the scene, the target density is set to
Drar(X) = I'(X) x Mt/Apix, (9.5)
which gives the final target density heuristic.

This choice for the constant is best explained by a caustic map exaiMpldetermines the number of
caustic photons we want to be contained in one pixel. The projection of the pixel onto the scene is given
by the importance in the scene (on the directly visible surface). The target density in the scene is thus
determined byM; photons in the pixel projection and is given by equation (9.5). This heuristic is illustrated

in figure 9.5.

A few remarks about the heuristic:

e Although the accuracy factavl; still has to be chosen by the user, it is much less dependent on a

particular scene than the number of emitted photons that had to be chosen before.

e For the global map, we use values fdf aroundl or 2, meaning that we want 1 or 2 photons per

pixel in the photon map.

e The caustic photon map is visualized directly and needs to be more accurate. Mig=t2&in our

examples.

e The accuracy of the reconstruction is also dependent on the number of nearest photons used. One
might makeM; dependent on this number also, for example by choddinas a user-defined fraction

of the number of nearest photons used.

One thing remains to be worked out before importance driven photon maps can be constructed: The
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importancel (x) must be known for every position in the scene. This can be done by initially computing

importance maps as discussed in the next section.

9.4 Importance maps

To evaluate the target density criterion, the importance must be known for each point in the scene. In this
section we will present two different ways to compute importance: one baskeapantons the adjoint of
photons §9.4.2), and the second one based on path differen§i@l4.3). To explain the difference between

these two approaches, we first need to make the distinction between pixel error and screen error.

9.4.1 Pixel error versus screen error

The target density heuristic (9.5) was derived for a single pixel. Each pixel defines a different importance
function and leads to a different target density in the scene.

A combined heuristic that considers all pixels can be defined by choosing an error metric over the
different pixels. Two error metrics will be of particular interest: the maximum error that takes the maximum

over all pixel errors and the mean error which leads to an average error over the whole screen.
9.4.1.1 Maximum pixel error

Each pixel defines a different importanCgix(x) in the scene that determines the impact of the radiance
reconstruction error iR on the error in the pixel flux.
The maximum pixel error metric chooses the target def3ifyx) by taking the maximum importance
in x over all pixels:
Mmax(X) = n;%x(r pix(X)) 5
and evaluating the heuristic (9.5) with this maximum importance. This error metric ensures that the error
in each individual pixel will be bounded, or in other words, that the photon map density in a point will be

high enough for the pixel that is most influenced by that point.
9.4.1.2 Screen error

Alternatively, one can also take the average of the different pixel importances to determine the target density:

1

Cavg(X) = Nipix
pix

I pix (X) .

The sum of the importance of all pixels, corresponds to the importance for the whole screen at once:

1

Cavg(X) = NT)ix

I ser(X) -

Using the screen importance to determine the target density, bounds the error through the screen as a whole.

Individual pixels, however, still may exhibit a large error.
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The advantage of using screen importance is that it is easier to compute. This is why other approaches

that use importance, always have used the screen importance [81, 58].

9.4.2 Importons

A first approach for computing importance in the scene is building an importance map by shiosting
portonsfrom the camera into the scene. The construction of an importance map is very similar to the
construction of a normal photon map, botportonsare used instead of photons. Peter and Pietrek [81]
were the first to use the importance equivalent of photons to build importance maps.

An importon has the same properties as a photon: a position, a direction and an importance flux, which
is equivalent to the power of a photon. An emitted importon is created by sampling a uniform point on a
pixel or on the screen. The starting position of the importon is the camera position itself; the direction is
given by the normalized vector from the camera to the sampled image point.

The importance of a single importon is derived from the total emitted importance flux and the number
of emitted importons. The total emitted importance flux for one pix&! jg = Apix. For the whole screen
this isW gor = Ascre

If N importons are shot into the scene, the importance of a single impoisogiven by¥; = W/N.
Scattering of importons (and the corresponding power adjustment) is the same as the scattering of photons.
Note that, due to scattering, an emitted importon (an eye path) may result in several stored importons, just
as with photons.

Importons are only stored on glossy or diffuse surfaces, since photons will also be stored on these
surfaces only. Two importance maps are needed: one for the caustic map and one for the global map. De-
pending on the history of the importon, it is added to the caustic or global importance map. The importance

paths must mimic exactly the paths traced in the final rendering pass:

e If no diffuse or glossyD|G) bounce was made before (or if the distance between the bounce and the
subsequent hit point is too small), then the global mapnatlbe used for radiance reconstruction in
the final pass. These importons must be stored in the caustic importance map. For example importons

that hit surfaces directly from the eye, corresponding to direct importance, will be stored in this map.

e Once an acceptabl@|G) bounce is made, the importon is stored in the global importance map,
because in the final pass the same eye path would use the global photon map. Note that further
scattering of the importon should only include specular bounces, because flrfGgbounces will

never be generated in the final rendering pass.

During importance map construction, the importons are stored in an array. Afterwards, this array is trans-

formed into a balanced kd-tree for faster access during photon map construction.
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Importance reconstruction To evaluate the required density, we need to reconstruct importance from the
importance map. The reconstruction of importance corresponds to the reconstrudgtiadiahcefrom a

photon map. Th& nearest importons are located and the importance is estimated as follows:

M
Su
=

Ty,

(x) ~ (9.6)

Pixel versus screen importance As mentioned before, both the maximum of the pixel importances or the
total screen importance can be used to determine the target density.

The maximum pixel error metric would require a separate importance map for each pixel, because the
maximumof the reconstructed importances is used to determine the required density at a certain point in
the scene. Computing an importance map for each pixel, however, is totally infeasible as it would require
emitting quite a number of importonger pixe| consuming too much time and memory. Therefore, it is
common practice to compute the screen importance and use the screen error metric.

Using the total screen error, a single importance map for the whole screen at once is sufficient. This

leads to a single caustic importance map and a single global importance map.

9.4.3 Path differentials

Since bounding each pixel to a maximum error ensures accuracy over the whole image, we have been
looking for ways to compute this without requiring an importance map per pixel.

In [P6] we computed a point based importance. Instead of enlarging the pixel to the full screen, it was
diminished to an infinitely small area. Importance was computed for individual points on the image. While
this gave quite good results for paths of length I, (D|G)E) paths), it was hard to generalize to longer
paths that include specular bounces.

Later we developed path differentials, that were discussed in detail in chapter 7. Path differentials
provide a convenient way to estimate the pixel importance for individual eye paths.

Using path differentials, the importan€éx) for a vertex in a path can estimated as the self-emitted
importance flux through a pixel, divided by the area of the footpFint

W pix
A(FR)°

I(x) =~ pd(x) =

For example, the footprint of a path in its image plane vergx has an are#pix (see chapter 7). The
self-emitted importance flux is al#g,x, So that the importandgyy(X pix) = 1 as expected.
The perturbation intervals must all be set to one, as we are only interested in the change of local density

of the path. The total self-emitted importance flux is associated with an elementary vdluraeund
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a) Pixel importance b) Screen importance c) Path differential based importance

Figure 9.6: Comparison of pixel and screen importance (for the global photon map): (a) shows the importance for 2
indicated pixels (b) shows the importance for the complete screen. The screen importance underestimates the impor-
tance on nearby walls. (c) shows a path based importance computed from path differentials. A close match with (a) is
obtained.

a pointu in path space. The footprint indicates the change of path density through the scaling of the

elementary intervalsluy by the partial derivatives.

Construction The construction of an importance map based on path differentials, proceeds along the
same lines as an importons based importance map. Several eye paths are traced through the screen and for
each hit point the importance estiméitg is evaluated. Note that the importance is estimated from a single

path.

The eye paths are constructed in exactly the same way as for importons. In practice, we store both the
importon weight¥; and the path differential importan€gq within the same importance map, so that two
importance estimates are computed at once.

The importance reconstruction locates the nearest imporemasind a poink, and estimateBpq(x) as

the maximum of p4(X;).
9.4.4 Comparison

We have compared the different methods to compute importance in a scene: pixel importance and screen
importance (both by computing an importance map) and importance based on path differentials.

Figure 9.6 shows the comparison for the indirect importance that is to be used in the target density of
the global photon map. This image is a close-up of the classic Cornell box scene (part of a cube, the floor,

and the right wall are visible).

e (a): The pixel importance was computed for two pixels. For each pixel a different importance map
was constructed by emitting a different set of importons. The importance in the scene is set to the

maximum of the importance over the (few) pixels.

Abutting surfaces near the projection of the pixel in the scene, show a very high importance. This
is logical, because those parts have a large influence on the indirect illumination of the respective

pixels. All other areas show a much lower importance.
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e (b): The screen importance was computed with a single importance map by shooting importons
through the whole screen. The self-emitted importance fAgg) is much larger than the emitted
importance flux for the other image® X Ayix). The importance was scaled to match the emitted

importance of the other images.

The screen importance shows a much lower importance near the pixels of interest, because an average
is taken over all pixels. These regions are unimportant for many other pixels, leading to a lower
average importance. Regions that are relatively important for many pixels in the image (the cube face

and the wall facing each other) show a higher importance.

e (c): The result using the path differential estimate shows a very good match with the actual pixel
importance. Because path differentials can estimate the pixel importance for a single path, it is no

longer needed to construct an importance map for each pixel separately.

This shows another interesting application of path differentials. In fact, the need for a path based
importance estimate during our work on density control [P6], has initiated our later work on path

differentials.

9.4.5 Practical computation of importance maps
9.4.5.1 Path differential importance

The estimaté pq(x) is taken as the maximum of the footprint importance over a number of nearest impor-
tons. This maximum, however, can cause rather abrupt changes in the target density, for example when
an importon with a very high importance is added to or removed from the nearest importons. Such abrupt
changes can cause some redistribution big8.2(6.2). Therefore, in practice an average is taken over
several nearest pixel importanées

Some eye paths that are refracted or reflected specularly may get extremely focused, so that the associ-
ated footprint becomes very small. This results in a huge importance and, thus, a huge target density that
can never be met. To relieve this problem, the path differential estimate ignores importons with a footprint
that is much smaller than the average of all importon footprints. In practice, footprints that are 100 times
smaller than the average are ignored (these would require a density a 100 times higher than the average).

The average footprint is accumulated during the construction of the importance map.
9.4.5.2 Combined importance

Pixel importance stresses the importance of nearby surfaces for individual pixels, while the screen impor-

tance computes an overall importance for the whole image. In our experiments both estimates performed

INote that this averaging does not lead to a screen based importance, because the importons nearaaepoattuniformly
distributed over the image plane. Neamnore importons will be located thateimportant inx (and that will have a smaller footprint).
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quite well, thus if an implementation of path differentials is not available, using the screen importance alone
also gives adequate results.

In practice, to get the best of both, we usually combine the pixel importance estimate using path dif-
ferentials with the normal screen importance estimation. We store both footprint and screen importance
information in the importon. Importance is estimated using both methods and a weighted average is taken.

The weights are chosen so that the average screen importance matches the average pixel importance:

r(ava

scr )
avg ’’
rio

(x) = 0.5(T ser(X) + pa(X)

The averages are computed when precomputing importances at the importon locatig@si(5e®)
While this is a rather arbitrary combination, it provides a fairly robust estimate for the required density.
Nevertheless, using solely the path differentials or even the screen importance, still can give satisfactory

results.
9.4.5.3 Precomputation of importance

The importance will determine the local density of the photon map. A smoothly varying density is beneficial
for the photon map reconstruction and for the redistribution that is used by the density c¢gi2d.Q).

This suggests using a large number of nearest importons to get a smoothly changing importance solution.
Normally we use around 200 importons in the estimate.

The target density must be evaluated for each photon, whether stored or not. Since locating the 200
nearest importons is expensive, and since the number of photons (= the number of queries) is usually much
larger than the number of importons, we precompute importance at the importon locations as proposed
by Christensen [20] (see al§8.5.2). However the precomputation is not necessarglloimporton loca-
tions (Christensen suggests 1/4th of the photons/importons). During photon tracing only the precomputed

importance is used, and the other importons can be discarded to save memory.

9.4.6 Conclusion: importance maps

We have discussed two methods to compute the importance (and the target density) throughout the scene:
one based on the density of importons, the other based on path differentials.

Both estimates can be computed at once by a new initial pass that traces eye paths through the scene. In
practice we use a combination of both estimates to evaluate the target density in the scene. Together with
density control for photon map constructidi®(2), we now have a practical method for importance driven

photon map construction.
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(b)

Figure 9.7: Required density of the caustic map (seen from an alternate camera, that was slightly shifted to the right).
Note the ‘importance caustic’ that indicates the region that is magnified by the egg. (a) shows screen importance, (b)
shows footprint based importance.

9.5 Results

In this section we will present and analyze several results obtained using importance driven photon map
construction. Note that the rendering pass does not have to change when using importance driven photon
maps.

We added the importance driven construction of photon maps to our photon map implementation in
RENDERPARK [9]. The extra code required for constructing the importance map and the redistribution on
top of a normal photon map (and path differential) implementation is limited.

The following results were computed on a 1GHz AMD Athlon PC with 256MB SDR SDRAM memory.

We will present results for the caustic map and global map separately.

9.5.1 Caustic map

To test importance driven density control for the caustic map, we used a room with a large glass egg in it.
It is lit by two light sources.

Importance maps were computed for the view shown in figure 9.9. The caustic importance map con-
tained 100.000 importons. Importance was precomputed for each importon location using the 200 nearest
importons. Tracing the importons took around 3 seconds, precomputation and kd-tree balancing took 15
seconds. The screen importance and footprint importance are computed simultaneously and both are stored
in the importon.

For the target density, the accuracy scale fadtfy) (vas set ta25. This is higher than for the global
maps, because the caustic map is visualized directly and a higher density is needed.

Figure 9.7 shows the required density as seen from an alternate viewpoint. Figure (a) shows the screen

importance estimate and (b) the footprint estimate. Some interesting observations can be made:
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Figure 9.8: Resulting density of the caustic map (seen from the original viewpoint). Bright parts of the caustic are
relatively dark because the required density is reached and no extra photons are stored. (200000 stored photons in total)

o

Figure 9.9: Final rendering of the egg scene.
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e Importance is focused through the egg on the ground. This results in a sort of importance caustic.
This is the part of the scene that is magnified most by the egg as can be seen in the final rendering in

figure 9.9.

e The screen importance (a) shows a much higher variance. This is because of density variations in the
importance map, that show up in the importance estimate. When using the footprint, each importon

carries an importance estimate and the density is not used.

e Some importons had very small footprints that are caused by eye paths that are extremely focused
by the glass egg. Although few of these paths occur, the small footprints cause ‘spike circles’ in
the required density estimate. As mentioneg¢%¥4.5.1 we remove the worst spikes by discarding

extremely small footprints.

To compute the caustic photon map, we used the average of screen and footprint importance. Figure 9.8
shows the resulting density of the caustic map. Around 200.000 photons are stored in the map. Without
density control 400.000 would have been stored at this point in time. If more photons are shot, the difference
grows because more regions reach the target density, and fewer and fewer photons are stored in the caustic
map. The gain is the largest in the bright parts of the caustic, where a large fraction of the photons arrive
and the target density is reached early on.

Unstored photons were distributed over 20 neighbors. These neighbors are also used to determine the
current density.

Tracing and storing the photons took about 140 seconds. This is slower than tracing the 400.000 photons
without density control (about 100 seconds), because of a lookup in the importance map (quite fast due to
the precomputation) and a lookup in the current photon map to determine the current density (slower as the
tree is not yet balanced). Compared to the final rendering time this difference is negligible.

Figure 9.9 shows the final rendering of the scene. Full global illumination is computed using a global
photon map. The final rendering took around 80 minutes (without irradiance caching. With irradiance
caching, this image can be computed in a few minutes)

Note that, in the end, no photons will be stored anymore when all lit regions have reached the required
density. This is an interesting advantage of the redistribution: We can just keep shooting photons until the
density in difficult parts of a caustic is sufficient without worrying about the many photons that would be
stored in the bright, ‘easy’ parts. In practice, we end the photon tracing when just a tiny fraction of photons

are added as new to the map.
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9.5.2 Global map

To show the benefits of importance for the global photon map we use an office scene with several desks and
light sources. The camera is looking towards a single desk with a glossy pad and some photo stands. The

view can be seen in the final rendered figure 9.13.

Figure 9.10 shows the required density. The average of screen and footprint importance was used with
an accuracy scale factbt; = 2. The glossy pad causes a high required density on the photo stands and part
of the wall, because the global map is visualized directly after the glossy refleB@®0importons were
stored and importance was precomputed for the importon locations using the 200 nearest importons.

Figure 9.11 (a) shows the resulting density of the global 800 photons are stored, resulting in a
fairly good match with the required density. TB@ nearest photons were used for redistribution. Without
density control400000photons would have been stored (density shown in figure 9.11 (b)).

Note that some parts did not yet reach the required density. The final rendering, however, shows no
artefacts. This indicates that the accuracy could be set even lower.

Figures 9.12 (a) and (b) show a direct visualization of the global map respectively with and without
density control. Diffuse irradiance was precomputed on the photon positi8rsZ). The80 nearest
photons were used in the radiance estimate.

While the overall illumination is similar, a coarser solution can be seen in unimportant parts of the
density controlled image. Note that these parts have a low variance due to the redistribution, but the bias or
blurring is higher (e.g., blurry shadow boundaries under the tables).

Figure 9.13 shows the final rendering using the density controlled map. The final rendering using the
400.000photons is not shown as no visible differences could be seen. The rendering took 90 minutes, which
is much more than the time needed for the importance and photon map construction (although irradiance
caching would reduce the rendering time significantly).

Note that a fairly open scene was used and that even in such scenes much can be gained by using visual
importance. Typical importance examples, such as a maze or a viewer standing in one room of a large
building would give even better results. As with all importance driven algorithms, the gain can be arbitrary
by choosing a large enough scene, where only a small fraction is visible.

Also note that the memory taken up by the importance maps, can be released when the photon map
construction is finished. This free memory can, for example, be used for storing irradiance caching nodes

in the rendering pass.
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Figure 9.10: Required density of the global map. The glossy pad causes a high required density on the photo stands
and part of the wall. Abutting surfaces also require a higher density.
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Figure 9.11: Overview of the resulting density of the global photon map. (a) uses density control, (b) does not.
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Figure 9.12: Direct visualization of the global photon map. This overview shows a coarser solution in unimportant
regions when using density control (a, 57000 photons). Overall illumination is of course the same as without density
control (b, 400000 photons).
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Figure 9.13: Final rendered image of the the office scene. The camera is looking towards one desk in the office.

9.6 A comparison to other approaches for importance driven photon
map construction

Other approaches for importance driven photon map construction have been proposed. In this section we
will compare these to our method.

Importance has been used in other rendering algorithms, before it was applied to photon maps. The first
application of importance in a graphics algorithm was by Smits et al. [102] who used importance to drive the
refinement in a hierarchical radiosity algorithm. Christensen [19] extended this principle to a non-diffuse
finite element method.

Pattanaik and Mudur [80] applied importance (or potential) to particle tracing radiosity. By estimating
importance on light sources, more particles could be directed towards relevant regions in the scene. This
idea was further explored by Détet al. [29] who also used the estimated importance to drive the sampling
of directions on surfaces during particle tracing.

In photon mapping, three other approaches, besides ours, have been presented. All the methods aim at

a more efficient construction of the photon map using the importance information.

9.6.1 Peter and Pietrek

In '98, Peter and Pietrek [81] presented an importance driven three-pass algorithm for photon map con-
struction. In a first pass ‘importons’ are shot from the camera into the scene to construct an importance

map. This map is used to gather importance on light sources. In a second pass photons are emitted into the
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scene based on the light source importance. When a photon is reflected the importance map is also used to
guide the photons towards important regions. The third pass consists of path tracing, where the photon map
is only used to construct a pdf for optimized direction sampling, but it is not used directly for illumination
reconstruction.

While photons are effectively concentrated in relevant parts of the scene, the method results in a photon
map that has a mixture of high and low powered photons. This results in an increased variance when one
would reconstruct radiance by locating the nearest photons. The radius of influence of a few high powered
photons would be clearly visible in the reconstruction, because they would increase the estimate by a large
amount.

Therefore, the number of nearest photons used in the reconstruction would have to be be very high in
order to reduce variance. This prevents straight application of the technique to the direct use of a global and

caustic map.

9.6.2 Keller and Wald

Keller and Wald [58] propose a different technique to control the density of photon maps:

Photons are emitted as in the standard photon mapping method. When a photon hits a diffuse or glossy
surface inx, it is not blindly stored but a discrete storage probabHityis determined based on the (screen)
importance inx. A low importance results in a low probabili§ and few photons will be stored in this
area.

If a photon is stored, the power of the photon is multiplied1g¥- to ensure energy conservation.
SincePr must be smaller thah, importance values are scaled down by a certain factor (e.g., the maximum
importance) and cut off a. The resulting density of the photon map is proportional to the importance
multiplied by the irradiancel” (X)E(x).

This method results in a homogeneous photon map, because the photon powers are scaled with a factor
1/Pr, which is dependent on position only. If the importance changes smoothly throughout the scene, then
so will the power of the photons.

The biggest drawback of this method, is that the number of photons in the photon map is not limited. A
bright area that also has a high importance, will keep storing the many photons that arrive. Clearly, this is
not necessary once a certain photon map accuracy is reached.

Our method does limit the number of photons in the photon map, which allows many photons to be
shot until less bright, but important regions reach a sufficient density. An additional advantage of our
method is that no photons are simply discarded, but are redistributed, which results in a variance reduction
due to the averaging of photon powers. This leads to a more smoothly varying radiance reconstruction,

especially in less important regions, where the higher bias can be tolerated. A lower variance in the radiance
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reconstruction, reduces the number of final gather rays required.

9.6.3 Christensen

Both Keller and Wald’'s method and ours do not change the way photons are emitted, only the storage
method is changed. It would be interesting to also emit photons in important directions, so that less photons
need to be traced.
Christensen suggests an adaptation of Peter and Pietrek’s method that emits fewer photons, but also
keeps the photon powers homogeneous [P9]. An importance map is built first using the importons method.
During photon map construction, the (hemi)sphere around each light source is subdivided in a number
of strata. For each stratum a small number of ‘feeler’ photons (with a high power) is sent out to evaluate
the importance of the stratum. If none of the photons reach an important area, the photons are stored.
However, if one of these high powered photons does reach an important area, it should not be stored.
Therefore, the stratum is labeled important, and a large number of low powered photons are emitted. Storage
of these photons is directed by a storage probability based on importance (similar to Keller and Wald),
because it is possible that the low powered photons reach unimportant areas. Instead, our storage method
based on redistribution could also be used here, effectively limiting the total number of photons.
Christensen’s method to guide more photons to important regions, would be an interesting addition to
our density control framework. While it would not really change the accuracy or the amount of photons in
the photon maps, it would reduce the time to construct the maps (although this time is much lower than the

rendering time, except perhaps for vast, complex scenes).

9.7 Conclusion

In this chapter we presented a framework for controlling the density in photon maps. The framework has
two main components: a method to adapt the photon map density to a target density that can be arbitrarily
chosen, and a criterion to determine such a target density from an importance solution for a particular view.

The result is a three-pass algorithm. A new initial pass computes an importance solution in the scene.
We presented two alternatives to compute importance: the classic method based on ‘importons’, that are
the importance equivalent of photons, and a method based on path differentials. Path differentials allow to
estimate pixel importance from a single eye-path, and thus allow to estimate pixel importance in the scene,
which would be intractable using the importons method.

The result of the framework is the construction of more memory-efficient photon maps. Far fewer
photons need to be stored compared to a standard photon map construction.

An even more important consequence, however, is that the density control framework leads the way to

fully error controlled photon maps. In our implementation we have assumed a simple relationship between



CHAPTER 9. DENSITY CONTROL FOR PHOTON MAPS 193

the reconstruction error in a photon map and its (target) density. When a better relationship can be derived,
for example based on perceptual principles or a better error analysis of nearest neighbor density estimation,
our method will allow precise error control while storing just enough photons. This will lead to a photon
map construction that does not require the user to choose the number of photons to emit or even the number
of nearest photons to use in the reconstruction. Since these two parameters depend on the scene, choosing
them currently requires knowledge about the behavior of the illumination in the scene, and an understanding
of the internals of the photon mapping algorithm. An automatic procedure to determine these parameters
would be preferable.

In its present state, density control relieves the user from choosing the number of photons in the pho-
ton map (but not yet from choosing the number of nearest photons). The accuracy paldmiateur
framework is quite independent of the scene, and is thus easier to determine (the first values we tried for the
caustic and global map worked well).

The density control framework also preserves all the advantages of the original photon mapping algo-
rithm: full global illumination is computed and the storage does not require a meshing of the scene.

Due to the limited amount of extra implementation (besides perhaps the optional path differentials), we

believe density control is an interesting addition to any existing photon mapping implementation.

Extensions and improvements

Still, many things in the density control framework can be improved and extended. We will highlight a few

interesting directions for future research.

e Currently the error due to the caustic or global map reconstruction is estimated independently of
any other illumination. Strong direct light for example can mask errors in the caustics or indirect
illumination, so that a lower accuracy could be allowed. For example in [P6], we experimented with
a very simple convergence heuristic for caustic maps, that takes into account the other illumination

in the scene (estimated from the global map).
One could also take into account surface texture, as illumination errors are less visible on high fre-
guency textures [83].

e The footprint estimate, computed using path differentials, could be used for other purposes:

— Compute the footprint of photons and distribute them accordingly.

— It could be used for eye paths in the rendering pass to determine the area over which photons
must be considered for illumination reconstruction. If too few photons are found, a secondary
final gather can be initiated. This might also help answering the question of how many photons

to use in the reconstruction.
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e The error analysis and redistribution were both targeted at diffuse illumination. For highly glossy
materials a directional target density criterion and redistribution method might deliver better results.
A simple method, for example, could be to just increase the target density by a factor based on the

glossiness of the material (e.g., multiply the target density by some function of the Phong exponent).



10 Conclusion

This chapter concludes this dissertation. The main topics are summarigz&@.in Original contributions
of this work are given ir§10.2 (in a little more detail than in chapter 1). We end this chapter by indicating

some interesting directions for future researgt((3).

10.1 Summary

This dissertation has focused on Monte Carlo techniques and multi-pass algorithms for global illumination
computations. After some introduction on global illumination, general Monte Carlo integration and multi-
pass methods, we have presented a number of techniques that allow the development of more advanced,
robust, and efficient multi-pass algorithms.

A first part of our work was concerned with multi-pass methods in general. Separation of light transport
over different algorithms is key in all multi-pass methods. Commonly, parts of the light transport are
described by a corresponding regular expression. We have inverted this idea by deriving the path evaluation
directly from a user-defined regular expression. With this, separation is easy, and can be tuned depending
on the specific multi-pass configuration.

Extreme separation, however, becomes difficult. Small illumination features may have to be sepa-
rated for optimal performance. This has led to the development of weighted multi-pass methods, that use
weighting instead of separation. Weighted multi-pass methods are able to preserve the strengths of separate
methods even within overlapping transport. The techniques from the first part were demonstrated using a
combination of bidirectional path tracing and radiosity.

A second patrt in this dissertation deals with path differentials. The tracing of a path corresponds to
taking a point sample in path space. While point samples are convenient —they just require tracing infinitely
thin rays—, nothing is known about the neighborhood of the path. Path differentials address this problem by
computing a region of influence, a footprint, of a path through the computation of partial derivatives. Some
work had to be invested in differentiating the sampling procedures and in finding good perturbation interval
heuristics, but the resulting footprint estimation is convenient and very useful for many global illumination
algorithms. This was demonstrated by several applications: local texture filtering, a refinement oracle for
hierarchical particle tracing radiosity, and the computation of importance maps.

A final part of this work looked at photon mapping, an interesting and popular multi-pass method. We
have first analyzed the standard photon mapping method and identified some difficulties with the photon

map construction: a large memory usage and some scene-dependent parameters (the total number of pho-

195
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tons, the number of nearest photons in the reconstruction), which are not obvious to determine, especially
for inexperienced users. We developed a density control framework that addresses some of these difficul-
ties. By redistribution of unstored photons, the actual density can be adapted to any given target density
function. A target density criterion that is based on the importance of regions in the scene with respect to
the viewer, ensures that all regions store the right amount of photons. The result is that far fewer photons
need to be stored and that choosing the number of photons is not as stringent as before.

These three parts together provide several new and general techniques that help the development of

better, more robust Monte Carlo methods for multi-pass global illumination.

10.2 Original contributions

This section gives an overview of all the original contributions that were presented in this dissertation. Some
contributions have been published before in some of our papers, some others were presented for the first

time in this text. The contributions are organized by chapter.

Chapter 5

e The idea and technique to derive the path evaluation directly from the regular expressions that de-
scribe the partial light transport is new. It enables a versatile separation of light transport in image-

space passes that are based on path sampling. It has led to more advanced multi-pass configurations.

e For the first time, bidirectional path tracing was tightly incorporated into a multi-pass method. This

was a direct result of the regular expression based evaluation.

Chapter 6

¢ A new Monte Carlo variance reduction technique that extends multiple importance sampling was
proposed. The technique allows a weighted combination of separate estimators that estimate the

same integral, but that use a different amount of precomputed information.

e Provably good heuristics were derived for the weighting functions used in this extension of multiple

importance sampling.

e The theory was applied to multi-pass methods. For the first time a weighted multi-pass method
was proposed. The weighting automatically preserves the strengths of the different methods that are
combined, even within the overlapping transport. A specific weighted combination of bidirectional

path tracing and radiosity was presented, that improves on the non-weighted combination.
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Chapter 7

Path differentials significantly extend ray differentials as presented by Igehy in [44]. While ray differentials
are limited to classical ray tracing only, path differentials can be applied to arbitrary Monte Carlo sampled
paths and support area light sources, general BSDFs, and just about anything else for which a sampling
procedure can be defined. All global illumination algorithms based on path sampling can benefit from path
differentials, considerably extending the field of applications compared to ray differentials.

Specific contributions concerning path differentials are the following:

e A precise definition of the notion of a path footprint was given for sampled paths that can depend
on any number of variables. An alternative definition based on convolution was also given, but not

further explored.

o A first order Taylor approximation of a footprint was constructed for any vertex or direction in a
path; it is based on partial derivatives and differential vectors. A simple procedure that constructs a

convenient representation of the footprint, was derived.

e Several heuristics were introduced in order to determine an appropriate neighborhood around a sam-
ple point in path space, in order to ensure coherence over the footprint. These heuristics are vital for
a good noise versus bias trade-off. A combined heuristic that performs well in all our applications

was based on the number of samples, the path gradient, and the second order derivatives.

e An application for local texture filtering in stochastic ray tracing was presented. Noise due to texture

variation is reduced by filtering over the footprint.

A second application presents a refinement oracle for particle tracing radiosity. This is the first

refinement oracle that can determine a suitable subdivision level for a single path.

Chapter 8

This chapter describes the standard photon mapping method and several optimizations. Some minor contri-

butions in this chapter are the following:

e An alternative formulation of the radiance reconstruction from photon maps as a standard Monte

Carlo estimator.
¢ A novel heuristic for automatically determining a maximum search radius for nearest photon queries.

Chapter 9

The density control framework made several contributions to the photon mapping method:
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e Redistribution of photons was introduced in order to adapt the actual density of photon maps to an
arbitrary target density criterion. An important effect of the density control is that the total number of

photons in the map is limited.

e Animproved redistribution was proposed (compared to our previously published work), that reduces

bias in case of discontinuities in the target density.

e From an error analysis of the rendering pass, an importance based target density heuristic was derived.
The difference with other importance based photon mapping methods is that this heuristic specifies

an absolute target density in terms of a single accuracy parameter.

e A new method to estimate importance throughout the scene was (easily) derived from path differen-
tials. Importance can be estimated from a single path, allowing for a pixel-based importance estimate
instead of the common screen-based importance, that has to consider the average error through the

whole screen at once in order to be practical.

The resulting three-pass importance driven photon mapping algorithm results in far fewer stored photons,

and introduces some level of automatic error control in photon mapping.

RenderPark

During the research conducted for this dissertation, all the techniques have been implemB&ted #R-
PARK [9]. The source code ARENDERPARK is freely available to the rendering community, and it is being
used by other people for research and educational purposes. TheRHamERPARK in itself is definitely

an important contribution of this dissertation.

10.3 Directions for future research

From all the previous global illumination research it has become apparent that the most efficient and robust
algorithms combine the strengths of several different techniques. This is obvious in multi-pass methods,
as demonstrated, for example, in the intelligent combination of algorithms and optimizations in photon
mapping. It is unlikely that a new single-pass algorithm will replace all available algorithms, optimization
techniques, and their combinations, to form the ultimate global illumination algorithm.

Therefore, in this work, we have been looking for general techniques to combine and improve the wealth
of algorithms available. The most interesting directions for future research, with respect to the work in this
dissertation, would be the development of improved techniques, and the application and combination of the

techniques in more global illumination algorithms.
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10.3.1 Improved techniques

Although the techniques we presented can be and were all used in practice, several of them still have room
for further improvement. Most of the extensions and improvements have been mentioned in the respective

chapters. Here, we will just repeat a few that we consider the most important:

e The flexibility and wide application of path differentials invites more research to improve them fur-
ther. Future research could focus on improved heuristics for the perturbation intervals to ensure a
better coherence (e.g., fully integrated second order derivatives, selective visibility tests), on non-
constant footprints (convolution footprint, higher order gradients), and on efficiency (reducing the

number of differential vectors before scattering).

e Density control for photon maps could benefit from a directionally dependent redistribution and a
directional target density criterion to better handle glossy surfaces. Also, a better relation between
the target density and the reconstruction error should be derived, perhaps based on perceptual issues

or on a detailed error analysis of nearest neighbor density estimation.

10.3.2 More applications and combinations

Most of the techniques we presented are applicable to more global illumination algorithms than we have
demonstrated. Therefore, we foresee that they will find application in other algorithms.

The weighted multi-pass theory can be applied to other multi-pass methods. This is, however, not an
easy task because the separation and different sampling techniques must be analyzed carefully, and the
derivation of the weighting heuristics is non-trivial. The application that we presented nevertheless shows
that itis indeed possible and that the benefits are substantial. It would be interesting to apply the weighting to
the photon mapping method, which could result in an automatic separation of light transport into a directly
and indirectly visualized photon map, instead of the current fixed separation that only stores caustics in the
directly visualized map.

Path differentials form a really practical tool. The applications that we have developed with path dif-
ferentials were easy to develop and to implement. More applications await, some of which we indicated in
the conclusions of chapter 7. Again, photon mapping would be a candidate for further application of path
differentials, not only in the initial, importance computation pass but also during photon map construction
and rendering.

There are also other interesting techniques and tools that could easily be combined with our methods.
For example, quasi-Monte Carlo methods exhibit a superior performance over the standard Monte Carlo
sampling that we have used. Adaptive sampling, a parallel implementation, or coherent ray tracing can give

very good speed-ups. Adding these techniques is not difficult and they would further increase the efficiency
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of our methods.

10.3.3 Error control

A more general direction for future research is the development of accurate error control for global illumi-
nation algorithms such as presented in this work. Weighted multi-pass methods, path differentials, as well
as density control for photon maps, they all provide a framework where the error can be controlled. We
have used heuristics to minimize the error or to trade bias for noise. While they were shown to work well,
they still are heuristics. Accurate error estimates and error bounds would not only give better solutions and
heuristics, but would also tell us exactly how good our solutions are. Most of the estimators we presented
are consistent (e.g., path differential applications and photon maps) for which error estimation is rather
difficult. Full error control will not be obtained easily, but it is very promising.

Recent work on error control based on perceptual principles might also contribute to this goal.

The ultimate rendering algorithm

The goal of any global illumination researcher is to find the ultimate rendering algorithm, that computes
images quickly and accurately for any imaginable scene.

| am no different, and I've been haunted in my dreams by visions of a real-time fully error controlled
weighted multi-pass photon mapping method in which path differentials perfectly estimate all the necessary
parameters. | still think this is a good way to go, and this work has taken some steps in this direction. Should
‘the perfect algorithm’ be found, | believe it will consist of a combination of different techniques that each
have stood the test of time. We're not there yet, but a Ph.D. has to finish at some point in time. For me, that

point in time being now. . .
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